Смекни!
smekni.com

Вступительные вопросы по физике для заочников, поступающих в СГАУ. (стр. 11 из 12)

Если на решётку падает белый свет, то для всех значений длин волн положение максимумов нулевого порядка (m = О) совпадут; положение же максимумов более высоких порядков различны: чем больше l,????// тем больше j при данном значении m. Поэтому центральный максимум имеет вид узкой белой полосы, а главные максимумы других порядков представляют разноцветные полосы конечной ширины — дифракционный спектр. Таким образом, дифракционная решётка разлагает сложный свет в спектр и поэтому с успехом используется в спектрометрах.

Дисперсия света.Явление зависимости показателя преломления вещества от частоты света называется дисперсией света. Установлено, что с возрастанием частоты света показатель преломления вещества увеличивается. Пусть на трёхгранную призму падает узкий параллельный пучок белого света на котором показано сечение призмы плоскостью чертежа и одни из лучей). При прохождении через призму он разлагается на пучки света разного цвета от фиолетового до красного. Цветную полосу на экране называют сплошным спектром. Нагретые тела излучают световые волны со всевозможными частотами, лежащими в интервале частот от

до
Гц. При разложении этого света и наблюдается сплошной спектр. Возникновение сплошного спектра объясняется дисперсией света. Наибольшее значение показатель преломления имеет для фиолетового света, наименьшее — для красного. Это приводит к тому, что сильнее всего будет преломляться фиолетовый свет и слабее всего —красный. Разложение сложного света при прохождении через призму используется в спектрометрах

3. Интерференция волн.Интерференцией волн называют явление усиления и ослабления волн в определённых точках пространства при их наложении. Интерферировать могут только когерентные волны. Когерентными называются такие волны (источники), частоты которых одинаковы и разность фаз колебаний не зависит от времени. Геометрическое место точек, в которых происходит усиление или ослабление волн соответственно называют интерференционным максимумом или интерференционным минимумом, а их совокупность носит название интерференционной картины. В связи с этим можно дать иную формулировку явления. Интерференцией волн называется явление наложения когерентных волн с образованием интерференционной картины.

Явление интерференции света используется для контроля качества обработки поверхностей, просветления оптики, измерения показателей преломления вещества и т.д.

.

44. Фотоэффект и его законы. Кванты света. Уравнение Эйнштейна.

1.Фотоэлектрический эффект. Явление вырывания электронов из вещества под действием электромагнитных излучений (в том числе и света) называют фотоэффектом. Различают два вида фотоэффекта: внешний и внутренний. При внешнем фотоэффекте вырванные электроны покидают тело, а при внутреннем —остаются внутри него. Необходимо отметить, что внутренний фотоэффект наблюдается только в полупроводниках и диэлектриках. Остановимся только на внешнем фотоэффекте. для изучения внешнего фотоэффекта используется схема, приведённая на рис. 87.1. Анод А и катод К помещаются в в сосуд, в котором создаётся высокий вакуум. Такой прибор называется фотоэлементом. Если на фотоэлемент свет не падает, то ток в цепи отсутствует, и амперметр показывает ноль. При освещении его светом достаточно высокой частоты амперметр показывает, что в цепи течёт ток. Опытным путём установлены законы фотоэффекта:

1. Число электронов, вырываемых из вещества, пропорционально интенсивности света.

2. Наибольшая кинетическая энергия вылетаю щах электронов пропорциональна частоте света и не зависит ом его интенсивности.

З. Для каждого вещества существует красная граница фотоэффекта, т.е.. наименьшая частота

света, при которой ещё возможен фотоэффект.

Волновая теория света не в состоянии объяснить законы фотоэффекта. Трудности в объяснении этих законов привели Эйнштейна к созданию квантовой теории света. Он пришёл к выводу, что свет представляет собой поток особых частиц, называемых фотонами или квантами. Энергия фотонов e равна e=hn, где n — частота cвeтa, h - постоянная Планка.

Известно, что для вырывания электрона ему надо сообщить минимальную энергию, называемую работой выхода А электрона. Если энергия фотона больше или равна работе выхода, то электрон вырывается из вещества, т.е. происходит фотоэффект. Вылетающие электроны имеют различные кинетические энергии. Наибольшей энергией обладают электроны, вырываемые с поверхности вещества. Электроны же, вырванные из глубины прежде, чем выйти на поверхность теряют часть своей энергии при соударениях с атомами вещества. Наибольшую кинетическую энергию Wк, которую приобретает электрон, найдём, используя закон сохранения энергии,

или

где m и Vm – масса и наибольшая скорость электрона. Это соотношение можно записать иначе:

или

Это уравнение называют уравнением Эйнштейна для внешнего фотоэффекта. Оно формулируется: энергия поглощённого фотона расходуется на работу выхода электрона и приобретение им кинетической энергии.

Уравнение Эйнштейна объясняет все законы внешнего фотоэффекта. Пусть на вещество падает монохроматический свет. Согласно квантовой теории, интенсивность света пропорциональна энергии, которая переносится фотонами, т.е. пропорциональна числу фотонов. Поэтому с увеличением интенсивности света увеличивается число фотонов, падающих на вещество, а следовательно, и число вырываемых электронов. Это есть первый закон внешнего фотоэффекта. Из формулы (87.1) следует, что наибольшая кинетическая энергия фотоэлектрона зависят от частоты v света и от работы выхода А, но не зависит от интенсивности света. Это второй закон фотоэффекта. И, наконец, из выражения (87.2) вытекает вывод, что внешний фотоэффект возможен, если hv ³ А. Энергии фотона должно по крайней мере, хватить хотя бы на вырывание электрона без сообщения ему кинетической энергии. Тогда красную границу v0 фотоэффекта находим из условия hv0 = А или v0 =А/h. Таким образом объясняется третий закон фотоэффекта.

45. Ядерная модель атома. Опыты Резерфорда по рассеянию α – частиц.

Состав атомного ядра. Эксперименты Резерфорда показали, что атомы имеют очень малое ядро, вокруг которого вращаются электроны. По сравнению с размерами ядра, размеры атомов огромны и, поскольку практически вся масса атома заключена в его ядре, большая часть объёма атома фактически является пустым пространством. Атомное ядро состоит из нейтронов и протонов. Элементарные частицы, образующие ядра (нейтроны и протоны) — называются нуклонами. Протон (ядро атома водорода) обладает положительным зарядом +е, равным заряду электрона и имеет массу в 1836 раз больше массы электрона. Нейтрон — злектрически нейтральная частица с массой примерно равной 1839 масс электрона.

Количество протонов Z в ядре нейтрального атома равно числу электронов в его электронной оболочке и определяет его заряд, равный +Ze. Число Z называется зарядовым числом и определяет порядковый номер химического элемента периодической системы Менделеева. N — число нейтронов в ядре, А — массовое число, равное суммарному количеству протонов Z и нейтронов N в ядре. Ядро атома обозначается тем же символом, что и химический элемент, снабжаясь двумя индексами (например,

), из которых верхний обозначает массовое, а нижний зарядовое число.

Изотопами называются ядра с одним и тем же зарядовым числом и различными массовыми числами. Большинство химических элементов имеет несколько изотопов. Они обладают одинаковыми химическими свойствами и занимают одно место в таблице Менделеева. Например, водород имеет три изотопа: протий (

), дейтерий (
) и тритий (
). У кислорода встречаются изотопы с массовыми числами А = 16, 17, 18. В подавляющем большинстве случаев изотопы одного и того же химического элемента обладают почти одинаковыми физическими свойствами (исключение составляют, например, изотопы водорода)

Приближённо размеры ядра были определены в опытах Резерфорда по рассеянию a-частиц. Наиболее точные результаты получаются при изучении рассеяния быстрых электронов на ядрах. Оказалось, что ядра имеют примерно сферическую форму и её радиус зависит от массового числа А по формуле

м.

46. Испускание и поглощение света атомами. Непрерывный линейчатый спектр.