Смекни!
smekni.com

Билеты по физике (стр. 13 из 15)

Конденсатор – система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Между пластинами напряженность поля равна удвоенной напряженности каждой из пластин, вне пластин она равна нулю. Физическая величина, равная отношению заряда одной из пластин к напряжению между обкладками называется электроемкостью конденсатора

. Единица электроемкости – фарад, емкостью 1 фарад обладает конденсатор, между обкладками которого напряжение равно 1 вольту при сообщении обкладкам заряда по 1 кулону. Напряженность поля между пластинами твердого конденсатора равна сумме напряженность ей пластин.
, а т.к. для однородного поля выполняется
, то
, т.е. электроемкость прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между ними. При введении между пластинами диэлектрика, его электроемкость повышается в e раз, где e – диэлектрическая проницаемость вводимого материала. Конденсаторы используются в различных радиоэлектронных устройствах. Они используются для сглаживания пульсаций в выпрямителях переменного тока, для разделения постоянной и переменной составляющей тока, в электрических колебательных контурах радиопередатчиков и радиоприёмников, для накопления больших запасов электрической энергии при проведениии физических экспериментов в области лазерной техники и управляемого термояжерного синтеза.

Билет №23

1) Модель атома Резерфорда – Бора. Квантовые постулаты Бора.

Первая модель строения атома принадлежит Томсону. Он предположил, что атом это положительно заряженный шар, внутри которого расположены вкрапления отрицательно заряженных электронов. Резерфорд провел опыт по облечению быстрыми альфа-частицами металлической пластинки. При этом наблюдалось, что часть из них немного отклоняются от прямолинейного распространения, а некоторая доля – на углы более 20. Это было объяснено тем, что положительный заряд в атоме содержится не равномерно, а в некотором объеме, значительно меньшем размера атома. Эта центральную часть была названа ядром атома, где сосредоточен положительный заряд и почти вся масса. Радиус атомного ядра имеет размеры порядка 10-15 м. Также Резерфорд предложил т.н. планетарную модель атома, по которой электроны вращаются вокруг атома как планеты вокруг Солнца. Радиус самой дальней орбиты = радиусу атома. Но эта модель противоречила электродинамике, т.к. ускоренное движение (в т.ч. электронов по окружности) сопровождается излучением ЭМ-волн. Следовательно, электрон постепенно теряет свою энергию и должен упасть на ядро. В действительности ни излучения, ни падения электрона не происходит. Объяснение этому дал Н.Бор, выдвинув два постулата – атомная система может находится только в некоторых определенных состояниях, в которых не происходит излучения света, хотя движение происходит ускоренное, и при переходе из одного состояния в другое происходит или поглощение, или испускание кванта по закону

, где постоянная Планка
. Различные возможные стационарные состояния определяются из соотношения
, где n – целое число. Для движения электрона по окружности в атоме водорода справедливо выражение
, кулоновская сила взаимодействия с ядром
. Отсюда
. Т.е. ввиду постулата Бора о квантовании энергии, движение возможно только по стационарным круговым орбитам, радиусы которых определяются как
. Все состояния, кроме одного, являются стационарными условно, и только в одном – основном, в котором электрон обладает минимальным запасом энергии – атом может находиться сколь угодно долго, а остальные состояния называются возбужденными.

2) Электронно-дырочный переход и его свойства. Полупроводниковый диод и его применение.

Полупроводниковый диод состоит из p-n перехода, т.е. из двух соединенных полупроводников разного типа проводимости. При соединении происходит диффузия электронов в р-полупроводник. Это приводит к появлению в электронном полупроводнике нескомпенсированных положительных ионов донорной примеси, а в дырочном – отрицательных ионов акцепторной примеси, захвативших продиффундировавшие электроны. Между двумя слоями возникает электрическое поле. Если на область с электронной проводимостью подать положительный заряд, а на область с дырочной – отрицательный, то запирающее поле усилится, сила тока резко понизится и почти не зависит от напряжения. Такой способ включения называется запирающим, а ток, текущий в диоде – обратным. Если на область с дырочной проводимостью подать положительный заряд, а на область с электронной – отрицательный, то запирающее поле ослабится, сила тока через диод в этом случае зависит только от сопротивления внешней цепи. Такой способ включения называется пропускным, а ток, текущий в диоде – прямым

Билет № 24

1) Состав ядра атома. Изотопы. Энергия связи.

Электрический заряд атома ядра q равен произведению элементарного электрического заряда e на порядковый номер Z химического элемента в таблице Менделеева

. Атомы, имеющие одинаковое строение, имеют одинаковую электронную оболочку и химически неразличимы. В ядерной физике применяются свои единицы измерения. 1 ферми – 1 фемтометр,
. 1 атомная единица массы – 1/12 массы атома углерода
.
. Атомы с одинаковым зарядом ядра, но различными массами, называются изотопами. Изотопы различаются своими спектрами. Ядро атома состоит из протонов и нейтронов. Число протонов в ядре равно зарядовому числу Z, число нейтронов – массе минус число протонов A–Z=N. Положительный заряд протона численно равен заряду электрона, масса протона – 1.007 а.е.м. Нейтрон не имеет заряда и имеет массу 1.009 а.е.м. (нейтрон тяжелее протона более чем на две электронные массы). Нейтроны стабильны только в составе атомных ядер, в свободном виде они живут ~15 минут и распадаются на протон, электрон и антинейтрино. Сила гравитационного притяжения между нуклонами в ядре превышает электростатическую силу отталкивания в 1036 раз. Стабильность ядер объясняется наличием особых ядерных сил. На расстоянии 1 фм от протона ядерные силы в 35 раз превышают кулоновские, но очень быстро убывают, и при расстояния около 1.5 фм ими можно пренебречь. Ядерные силы не зависят от того, имеется ли у частицы заряд. Точные измерения масс атомных ядер показали наличие различия между массой ядра и алгебраической суммой масс составляющих его нуклонов. Для разделения атомного ядра на составляющие необходимо затратить энергию
. Величину
называют дефектом массы. Минимальную энергию, которую необходимо затратить на разделение ядра на составляющие его нуклоны, называется энергией связи ядра, расходуемой на совершение работы против ядерных сил притяжения. Отношение энергии связи к массовому числу называется удельной энергией связи. Ядерной реакцией называется превращение исходного атомного ядра при взаимодействии с какой-либо частицей в другое, отличное от исходного. В результате ядерной реакции могут испускаться частицы или гамма-кванты. Ядерные реакции бывают двух видов – для осуществления одних надо затратить энергию, при других происходит выделение энергии. Освобождающаяся энергия называется выходом ядерной реакции. При ядерных реакциях выполняются все законы сохранения. Закон сохранения момента импульса принимает форму закона сохранения спина.

2) Электрический ток в полупроводниках. Собственная и примесная проводимость полупроводников. Термо- и фоторезисторы.

Многие вещества не проводят ток так хорошо, как металлы, но в то же время не являются диэлектриками. Одним из отличий полупроводников – то, что при нагревании или освещении их удельное сопротивление не увеличивается, а уменьшается. Но главным их практически применимым свойством оказалась односторонняя проводимость. Вследствие неравномерного распределения энергии теплового движения в кристалле полупроводника некоторые атомы ионизируются. Освободившиеся электроны не могут быть захвачены окружающими атомами, т.к. их валентные связи насыщены. Эти свободные электроны могут перемещаться в металле, создавая электронный ток проводимости. В то же время, атом, с оболочки которого вырвался электрон, становится ионом. Этот ион нейтрализуется за счет захвата атома соседа. В результате такого хаотического перемещения возникает перемещение места с недостающим ионом, что внешне видно как перемещение положительного заряда. Это называется дырочным током проводимости. В идеальном полупроводниковом кристалле ток создается перемещением равного количества свободных электронов и дырок. Такой тип проводимости называется собственной проводимостью. При понижении температуры количество свободных электронов, пропорциональное средней энергии атомов, падает и полупроводник становится похож на диэлектрик. В полупроводник для улучшения проводимости иногда добавляются примеси, которые бывают донорные (увеличивают число электронов без увеличения числа дырок) и акцепторные (увеличивают число дырок без увеличения числа электронов). Полупроводники, где количество электронов превышает количество дырок, называются электронными полупроводниками, или полупроводниками n-типа. Полупроводники, где количество дырок превышает количество электронов, называются дырочными полупроводниками, или полупроводниками р-типа.