ω — количество витков охватываемых контуром (в данном случае ω = ω2 ).
|
Исходя из полученных зависимостей, можно произвести исследование магнитных свойств ферромагнитных материалов, т.е. благодаря электронному осциллографу получаем на экране экспериментальную зависимость В от Н (петлю гистерезиса), по которой затем определяем напряженности (максимальную и коэрцитивную силу) и магнитные индукции (максимальную и остаточную) поля, а также можно определить магнитную проницаемость μ данного материала.
В этой части курсовой работы опишем лабораторную установку, при помощи которой производят исследование ферромагнитного материала, а точнее двух типов ферромагнитных материалов (феррит и электротехническая сталь).
Схема установки приведена в приложении.
Установка работает в трех режимах (в зависимости от положения тумблера Тмб):
◊0 – режим нейтрального положения, т.е. напряжение на исследуемые образцы не подано, цепь обесточена;
◊I– в этом режиме производят измерение ферромагнитных свойств тороидального феррита М2000НМ типоразмера К20х12х6;
◊II – в этом режиме производят исследование магнитопровода трансформатора ТВК-90-ПЦ-5.
| Необходимо помнить, что установка работает на переменном напряжении, и во избежании несчастных случаев нужно соблюдать технику безопасности.Также не следует включать режим Iпри входном напряжении частотой 50 Гц, т.е. в "сеть" ибо это действие может привести к порче оборудования. |
При исследовании явления магнитного гистерезиса производится расчеты напряженности магнитного поля и магнитной индукции по выше рассмотренным формулам.
В качестве исследуемого образца был взят трансформатор марки ТВК-90-ПЦ-5. Количество витков в первичной обмотке ω1=173, во вторичной ω2=64.
Питание схемы осуществляется от ЛАТра (лабораторного автотрансформатора), выходное напряжение которого устанавливается равным 56 В.
|
Для продолжения дальнейшей работы необходимо осуществить калибровку осциллографа, т.е. установить чувствительность на входах (Х) и (Y). Для этого падают сигнал постоянного напряжения определенной величины поочередно на вход (Х), а затем на вход (У). В результате чего по отклонению луча от первоначального положения устанавливают чувствительность осциллографа вольт/деление (в/дл).
Итак, осциллограф Осц находится во включенном положении и его выводы подключены согласно выше приведенной схеме. При это чувствительность по Х составляет 4,8 В/дл (в дальнейшем чувствительность по Х не меняется), а по У путем калибровки устанавливаем чувствительность равную 2,2 В/дл.
На экране осциллографа получаем петлю гистерезиса, которая характеризует собой потери в магнитопроводе. Полученная зависимость графически представлена на рисунке ниже.
По форме петли определим значение максимальных магнитной индукции Bmax и напряженности Hmaxмагнитного поля, а также значения коэрцитивной силы Hс и остаточной магнитной индукции Br.
Т.к. магнитная индукция и напряженность магнитного поля пропорциональны соответствующем напряжениям, графическая зависимость которых приведена на рисунке (см. ниже), мы можем определить данные величины исходя из полученного графика.
|
где UC2 – значение напряжение подающиеся на У осциллографа;
URр – значение напряжение подающиеся на Х осциллографа;
RР – сопротивление реостата Rр= 8 Ω;
LСрТр2 – средняя магнитная линия в магнитопроводе трансформатора;
SСрТр2 – площадь поперечного сечения магнитопровода трансформатора;
ω1 и ω2 – соответственно число витков в первичной и вторичной обмотке (ω1=173, ω2=64);
Для продолжения расчетов нам необходимо определить значения LСрТр2 и SТр2.
LСрТр2 – средняя магнитная линия, которая определяется длиной линии по которой циркулирует магнитный поток Ф.
В нашем случае магнитные потоки Ф1=Ф2, в силу симметричности магнитопровода, таким образом, LСрТр2 будет равна длине линии Ф2 (на рис. жирная линия).
После проделанных измерений, результаты которых приведены на рисунке, мы получаем, что LСрТр2=1,14ּ10-1м.
Площадь поперечного сечения магнитопровода определяется произведением ширины и толщины среднего участка магнитопровода, т.е. SСрТр2= 3,91·10-4 м2.
При наблюдении явления гистерезиса на экрана осциллографа мы получили, что
◊ Bmax соответствует значение равное 3,80 дл., т.е. напряжение при этом равно 8,36 В;
◊ Hmax соответствует 4,30 дл. —20,64 В;
◊ Вr равно 0,80 дл. — 1,76 В;
◊ Hсравно 0,40 дл.— 1,92 В;
◊Bmax=4,10 Тл;
◊Hmax=3915,26 А/м;
◊Вr=0,90 Тл;
◊Hс=364,21 А/м;
Теперь определим максимальную магнитную проницаемость материала μmax. Известно, что магнитная проницаемость прямо пропорциональна напряженности, т.е.
B=μ0ּμּH
где μ0 — магнитная постоянная, μ0=4πּ10 –7 [Гн/м]
|
Подставляя, полученные данные мы получаем следующее значение магнитной проницаемости, μmax=833 Гн/м (электротехническая сталь).
|
| |
Получаем следующие значения:
kB=0,50 [ΩּФ/м 2] ; kH=189,69 [1/(Ωּм)]
При помощи полученных коэффициентов мы можем определить магнитную проницаемость и напряженность магнитного поля в любой точке полученной кривой (петли гистерезиса), значения которых мы определяем при помощи осциллографа.
------>Пиши отсюда.