7
Мы рассматривали прохождение частицы через потенциальный барьер. Мы нашли решение для этой ситуации в случае, когда x<0 и когда и E>U0. Мы нашли, что он проходит барьер, но существует отличная от нуля вероятность, что он тем не менее отразится обратно, потому что в решении появилась отражённая волна.А теперь второй случай:
и .1)Уравнение (8.2) нам даёт:
, где . Раньше это было уравнение колебаний, имели решение в виде мнимых экспонент, а здесь будет решение в виде действительных экспонент (уравнения такого типа всегда удовлетворяются экспонентами):Слева от барьера было решение
. Опять мы должны получить функцию, заданную на всей оси x,2) мы снова должны сшить эти функции в точке x0=0.Опять имеем четыре константы, и условия для сшивки (8.3) и (8.4). Константу C1 мы считаем заданной (это мера интенсивности налетающего пучка),
это отражённая волна, C2 подлежит определению. В решении в правой части мы выкинем сразу, потому что функция экспоненциально нарастает, а это недопустимо для волновой функции (она интерпретируется как плотность вероятности): , подлежит определению. Условие (8.3) даёт: , (8.4): , и получим, что иВидно, что
, интенсивность отражённого пучка такая же как интенсивность падающего. Это означает, что весь пучок, действительно, отразится назад, но, тем не менее, волновая функция в области будет отлична от нуля: . То есть вероятность обнаружить частицу в классически запрещённой области отлична от нуля, – она экспоненциально затухает, но, все-таки, частица внедряется в эту запрещённую область. Частица уходит назад (интенсивность отражённого пучка такая же как интенсивность падающего, всё, что упало, всё отразилось), но то, что волновая функция не сразу обращается в ноль, физически проявляется в эффекте очень неожиданном на первый взгляд.Туннельный эффект
Не будем решать эту задачу, она решается, но, просто, алгебра здесь длинная. Рассмотрим барьер конечной ширины – вот такую потенциальную энергию U(x) (рис.6.6, а).Физически как реализовать эту ситуацию? Для электрона, поставив два конденсатора (рис.6.5). С точки зрения здравого смысла и классической механики что будет? Электрон летит, если его энергии достаточно, чтобы пробить конденсатор, то он через него пройдёт, долетит до следующего конденсатора, ускорится, вылетит и будет двигаться дальше с той же скоростью, с которой он подлетал. Если же у него энергии недостаточно, чтобы пробить первый конденсатор, то он сюда забурился, остановился, и его выбросило обратно, и он улетел, а что там дальше подставлять (человека поставить флажком махать или ещё что-нибудь) ему всё равно, он туда не долетает.
За барьером мы получаем волну с той же длиной. Качественно довольно очевидно, ну а формально можно получить всё это, только в два раза больше сил потребуется, чем для ступеньки, поскольку больше граничных условий.
Это означает, что, если энергия частицы меньше высоты барьера, то существует тем не менее отличная от нуля вероятность, что она пролетит, то есть, когда вы ставите для электрона конденсатор с тормозящим полем, через него электрон заведомо не проходит, но если вы дальше поставите конденсатор с ускоряющим полем, то он пройдёт. Чем дальше будет второй конденсатор, тем больше ширина потенциального барьера, тем меньше вероятность.
Конечно, ситуация удивительная, чтобы её перевести на житейский язык, так скажем. Человек не прыгнет на 3м, чемпионы сейчас на 2.30 прыгают, но на 3м не прыгнут, даже я берусь спорить, что никогда не прыгнут.1) Теперь в чистом поле роем яму глубиной 3м и туда человека скинули. Он там может прыгать, но из ямы не выскочит. Другая ситуация: на ровном месте окружаем его стеной высотой 3м (барьер конечной ширины), тогда, если он будет прыгать достаточно долго и упорно, окажется, что он из ямы не выпрыгнет (ступенька потенциальная), а стену может преодолеть. Можно сказать, что нет вероятности выскочить из ямы глубиной 3м, но есть отличая от нуля вероятность перепрыгнуть трёхметровую стену.2)
Конечно, на макроскопическом уровне это (преодоление трёхметровой стены) выглядит как чудо, а в атомных масштабах это заурядная вещь. Вот использование электричества в быту связано радикальным образом с туннельным эффектом: всякий проводник покрыт тонкой непроводящей плёнкой, когда два проводника они разделены непроводящей плёнкой, электроны преодолевают эту плёнку за счёт туннельного эффекта.3) Вот так всё на благо человечества устроено.
Ещё один пример. Мы обсуждали фотоэффект. Электрон в металле сидит в потенциальной яме, и он не выскакивает, потому что имеет перед собой потенциальную ступеньку. А если мы за металлом убавим потенциальную энергию как на рис.6.7, а это можно сделать (см. рис.6.8), электрон в металле этого поля не чувствует, но он имеет перед собой барьер конечной ширины, а это означает, что имеется отличная от нуля вероятность, что он выскочит из металла. Это известный эффект, он называется эффектом В. Шотки, – если вы к куску металла приложите электрическое поле (оно всегда перпендикулярно к эквипотенциальной поверхности металла) такое, что для выскочившего электрона оно будет ускоряющим, то электроны начнут вылетать из металла.
Если частица локализована в ограниченной области пространства, то говорят, что она находится в связанном состоянии.1) Например, две частицы внутри вот этого куска мела находятся в связанном состоянии (они заперты в объёме этого куска), электроны в атоме так же находятся в связанном состоянии. Почему эти состояния важны? А вот потому, что энергия частицы в связанном состоянии может принимать лишь определённые значения
2) (энергия квантуется). Это очень существенное свойство, не имеющее, кстати, классического аналога. Земля вращается вокруг Солнца – строго говоря, её энергия квантуется, просто уровни энергии не заметны, в атомных масштабах заметны. По классическим представлениям энергия системы это определённое число, оно сохраняется, чем это число определяется? Начальными условиями, тем, как возникла эта система. Оно может быть любым, скажем, энергия могла быть чуть больше, чем она есть, чуть меньше, в классической механике это дело не регламентируется никак, всё определяется начальными условиями. А вот электрон в атоме может иметь какое-то значение En, которое можно заранее предсказать, и никаких других значений быть не может.3) Формально это проявляется так: уравнение Шрёдингера для стационарных связанных состояний имеет разумные решения лишь при определённых значениях E. Это факт математический, а его физическая интерпретация такая, что только эти значения энергии E могут наблюдаться. Мы сейчас убедимся на простом примере.Частица в ящике
Мы сейчас смоделируем самое простое связанное состояние. Какое можно придумать самое простое связанное состояние? А вот такое – имеем ящик с абсолютно непробиваемыми стенками, с дверцей. Кинули туда частицу и дверцу захлопнули.1) Как это дело задать теперь математически? Потенциальная энергия в ящике равна нулю, вне ящика потенциальная энергия бесконечно велика, именно это и означает, что стенки ящика абсолютно непробиваемы (самый радикальный вариант связанного состояния). Дальше математика.