Наиболее часто инверсный режим транзистора используется в двунаправленных ключах. В этом случае транзистор делается симметричным и его усиление практически не изменяется при замене коллектора и эмиттера. В таких транзисторах области коллектора и эмиттера имеют одинаковые свойства и геометрические размеры, поэтому любая из них может работать как эмиттер или коллектор. Для симметричных транзисторов характеристики в инверсном режиме подобны характеристикам в линейном режиме.
Динамические характеристике биполярного транзистора. Динамические характеристики транзистора по-разному описывают его поведение в линейном или ключевом режимах. Для ключевых режимов очень важным является время переключения транзистора из одного состояния в другое. В то же время для усилительного режима транзистора более важными являются его свойства, которые показывают возможность транзистора усиливать сигналы различных частот.
Ток коллектора достигает установившегося значения не сразу после подачи тока в базу. Имеется некоторое время задержки /зад, спустя которое появляется ток в коллекторе. Затем ток в коллекторе плавно нарастает и после времени t»sp достигает» установившегося значения 7кл.
iвкл=iзад+ iпор, (4.10)
где iвкл, — время включения транзистора.
При выключении транзистора на сто базу подастся обратное напряжение, в результате чего ток базы меняет свое направление и становится равным /блык. Пока происходит рассасывание неосновных носителей заряда в базе, этот ток не меняет своего значения. Это время называется временем рассасывания г„с. После окончания процесса рассасывания происходит спад тока базы, который продолжается в течение времени tea- Таким образом, время выключения транзистора равно
iвык= iрас+ iсп. (4.11)
Следует особо отметить, что при выключении транзистора, несмотря на изменение направления тока базы, транзистор в течение времени tyc остается включенным и коллекторный ток не меняет своего значения. Спад тока коллектора начинается одновременно со спадом тока базы и заканчиваются они практически одновременно.
Время рассасывания сильно зависит от степени насыщения транзистора перед его выключением. Минимальное время выключения получается при граничном режиме насыщения. Для ускорения процесса рассасывания в базу пропускают обратный ток, который зависит от обратного напряжения на базе. Однако прикладывать к базе большое обратное напряжение нельзя, так как может произойти пробой перехода база-эмиттер. Максимальное обратное напряжение на базе обычно не превышает 5...7В.
Если к базе транзистора в процессе запирания не прикладывается обратное напряжение (например, база замыкается на эмиттер), то такое запирание транзистора называется пассивным. При пассивном запирании время рассасывания значительно увеличивается, а обратный ток базы уменьшается.
Форма импульса тока коллектора не только изменяется за счет растягивания длительности фронтов, но и сам импульс увеличивается по длительности на время {pie. В справочных данных обычно приводят времена включения, спада и рассасывания. Для наиболее быстрых транзисторов время рассасывания имеет значение 0,1 ...0,5мкс, однако для многих силовых транзисторов оно достигает Юмкс.
Динамические свойства транзистора в усилительном режиме принято характеризовать не временем включения или выключения, а его частотными характеристиками. Имеется много различных моделей транзисторов, работающих на высоких частотах, однако наиболее распространенными являются модели, основанные на схеме замещения Джиаколетто и аппроксимации зависимости коэффициента передачи тока базы (или эмиттера) на высокой частоте. Рассмотрим вначале схему замещения транзистора, предложенную Джиако-лстто. Эти схема приведена на рис. 4.8 а и представляет собой П-образную схему, в которой усилительные свойства транзистора учтены крутизной S его вольт-амперной характеристики (т. е. проводимостью прямой передачи), а частотная зависимость усилительных свойств определяется учетом емкостей между базой и коллектором — С„ и базой и эмиттером — С,. Достоинство этой схемы замещения заключается в том, что она с достаточной для практических расчетов точностью отражает реальное свойство транзисторов на высоких частотах. Кроме того, все параметры элементов этой схемы замещения можно легко измерить или рассчитать.
На схеме замещения (рис. 4.8 а) точки Б, К я Э являются реальными выводами базы, коллектора и эмиттера транзистора. Точка Б' находится внутри транзистора и, следовательно, доступа к ней нет. Сопротивление rg, разделяющее точки Б и Б', называют распределенным сопротивлением базы. Активная проводимость g, и емкость С, совместно отражают полную проводимость эмиттерного перехода. Отношение этих величин называется постоянной времени эмиттерного перехода т,=Сэ/^э и от режима работы транзистора практически не зависит.
Влияние коллекторного перехода учтено его полной проводимостью, состоящей из g^ и С„. Отношение этих параметров называется постоянной времени коллекторного перехода •^к=C,^/?к и также почти не зависит от режима работы транзистора. Проводимость gt обычно очень мала, а емкость С» несколько уменьшается с увеличением напряжения на коллекторе.
Наличие связи между эмиттером и коллектором учтено в схеме замещения активной проводимостью ^эк- Д™ высокочастотных транзисторов эта проводимость настолько мала, что ее можно не учитывать. Источник тока Suy.,, включенный между коллектором и эмиттером, аналогичен источнику тока Н^е, приведенному в схеме замещения рис. 4.4, однако в отличие от последнего он управляется не током базы if,, а напряжением щ-у
Эта схема объясняет причины, приводящие к уменьшению усиления транзистора с повышением частоты. Во-первых, с ростом частоты уменьшается полная проводимость эмиттерного перехода, что приводит к увеличению тока »е и увеличению падения напряжения на f«.
Рис. 4.8. Схема замещения транзистора на высокой частоте (а) и частотная зависимость коэффициента передачи тока базы (б)
Таким образом, управляющее напряжение Me., для источника тока уменьшается с ростом частоты и, следовательно, уменьшается усиление транзистора.
Дополнительное снижение усиления обусловлено влиянием коллекторной проводимости, которая тоже уменьшается с ростом частоты. В результате ток базы еще больше увеличивается, что приводит к дополнительному снижению напряжения «в-э.
Другим способом учета влияния частоты на усилительные свойства транзистора является аппроксимация зависимости коэффициента передачи тока базы от частоты, т. е. вместо постоянного значения коэффициента передачи тока базы В используется частотно-зависимый коэффициент
b(w)= h21з(w)= b0 / 1+j(w /wb) (4.12)
где: ^о^В — коэффициент передачи тока базы на низкой частоте, t0p — предельная частота коэффициента передачи тока базы.
Модуль частотной зависимости коэффициента передачи тока базы определяется по формуле
(4.13)На частоте ю=й)р модуль коэффициента передачи уменьшается по сравнению с ро в л/2= 1,41 раза. Если <B>3(0(i, то частотная зависимость коэффициента передачи тока базы принимает вид
(4.14)где <»r=pot0p граничная частота коэффициента передачи тока базы, на которой коэффициент передачи тока снижается до единицы.
Рассмотренная частотная зависимость коэффициента передачи тока базы приведена на рис. 4.8 б. Следует учесть, что помимо падения усиления с ростом частоты имеет место фазовый сдвиг выходного сигнала по сравнению с входным, определяемый формулой
(4.15)Поскольку фазовый сдвиг зависит от частоты, то сигналы с широким спектром частот будут дополнительно искажаться за счет фазового сдвига гармоник.
Лекция 5. Униполярные транзисторы
Устройство и принцип действия униполярного транзистора. Униполярными, или полевыми, транзисторами называются полупроводниковые приборы, в которых регулирование тока производится изменением проводимости проводящего канала с помощью электрического поля, перпендикулярного направлению тока. Оба названия этих транзисторов достаточно точно отражают их основные особенности: прохождение тока в канале обусловлено только одним типом зарядов, и управление током канала осуществляется при помощи электрического поля.
Электроды, подключенные к каналу, называются стоком (Drain) и истоком (Source), а управляющий электрод называется затвором (Gate). Напряжение управления, которое создает поле в канале, прикладывается между затвором и истоком. В зависимости от выполнения затвора униполярные транзисторы делятся на две группы: с управляющим р-л-переходом и с изолированным затвором.
В полевых транзисторах с изолированным затвором электрод затвора изолирован от полупроводникового канала с помощью слоя диэлектрика из двуокиси кремния SiOi. Электроды стока и истока располагаются по обе стороны затвора и имеют контакт с полупроводниковым каналом. Ток утечки затвора пренебрежимо мал даже при повышенных температурах. Полупроводниковый канал может быть обеднен носителями зарядов или обогащен ими. При обеденном канале электрическое поле затвора повышает его проводимость, поэтому канал называется индуцированным. Если канал обогащен носителями зарядов, то он называется встроенным. Электрическое поле затвора в этом случае приводит к обеднению канала носителями зарядов.