Отже, явища інтерференції й дифракції фіксують, насамперед, порушення прямолінійності поширення світла і незалежності світлових хвиль.
1. 4. Принцип суперпозиції. Інтерференція
Хвилі при одночасному поширенні в певному середовищі взаємно проникні: не відбувається підсилення чи послаблення самих хвиль. Цей факт набув свого відображення у відомому принципі суперпозиції. Суперпозиція – це “здатність фізичних полів до накладання, при якому векторні характеристики додаються геометрично, а після розходження поля існують незалежно одне від одного”. У принципі суперпозиції поєднуються дві, здавалося б, протилежні ознаки хвильових явищ, а саме: незалежність, тобто відсутність взаємодії, вірніше, зв’язку між хвилями, і накладання – наявність зв’язку, взаємодії. Тому виділимо умовно найпоширеніші випадки накладання хвиль.
1) При одночасному поширенні в певному середовищі некогерентні хвилі (хвилі, що відрізняються частотою, площиною коливань і не мають сталої різниці фаз) є незалежними. Саме завдяки суперпозиції ми можемо, наприклад, настроюватися на певну радіостанцію, хоча одночасно радіохвилі випромінюються десятками інших радіостанцій.
2) При накладанні двох когерентних хвиль від двох точкових джерел у точці зустрічі коливання гасяться.
Суперпозиція (накладання) двох когерентних хвиль з утворенням сталої в просторі і часі інтерференційної картини дістала назви інтерференції. При інтерференції хвилі поширюються незалежно одна від одної, а складаються коливання, що надходять у будь-яку точку простору від двох джерел. У момент взаємодії лише в даній точці порушується так званий принцип незалежності світлових пучків. Проте, хоча в точці зустрічі коливання і гасяться, після зустрічі хвилі знову поширюються незалежно одна від одної.
Найпоширенішими випадками інтерференції є:
1) інтерференція від двох точкових джерел (так звана інтерференція за схемою Юнга);
2) інтерференція від протяжних джерел (інтерференція в тонких плівках).
Чи є підстава вважати, що точкові джерела освітлюють екран рівномірно? Звернемося до експерименту, що демонструє інтерференцію світла за схемою Юнга (Рис. 3). Юнг пропускав сонячне світло крізь невеликий отвір в екрані і направляв його на два невеликі близько розміщені отвори в іншому екрані. Від кожного із них виходили дифрагуючі конусоподібні когерентні пучки світла, що перекривали один одного і давали інтерференційну картину. Якщо відтворити цей дослід, то можна переконатись, що ширина максимумів інтерференції і розподіл інтенсивності підтверджується теоретичними розрахунками за умови рівномірного освітлення дисків на екрані, а саме: ширина максимумів інтерференції та їх інтенсивність у центральній частині екрана однакові.
На рис.4 зображена інтерференційна картина від двох нескінченно тонких щілин (одержання її в умовах школи не виявляється можливим). Щілини - це, по суті, сукупність пар проколів (точкових джерел). Картина від щілин більш виразна, ніж від точкових джерел. Відстань
між інтерференційними максимумами (мінімумами) дорівнює
, (1)де b - відстань між щілинами, шириною яких нехтують,
- відстань від щілин до екрана, а розподіл інтенсивності світла на екрані
(2)де
- інтенсивність від однієї нескінченно тонкої щілини перпендикулярно до екрана. Тому розподіл інтенсивності світла являє собою серію максимумів однакової висоти.Однак, насправді при наближенні екрана до отвору дифракційна картина від кожного із отворів освітлена нерівномірно, а конусоподібні пучки світла при їх накладанні дають інтерференційну картину у вигляді сімейства гіпербол (прямі лінії лише в центральній частині). Як пояснити, чому дифракційне зображення окремої світної точки оточене темними кільцями, а в дифракційному зображенні щілини шириною
(тут ширину враховують) присутні темні вертикальні лінії?
Розділ 2.
Дифракція і принцип Гюйгенса-Френеля.
2.1. Розташування і ширина максимумів дифракції на екрані
Очевидно, утворення світлих і темних смуг пов`язане із відхиленням променів. Припустимо, що світло - потік корпускул. Тоді виникнення світлих і темних ділянок стане можливим, коли взаємодія корпускул із перешкодою залежатиме від відстані між ними стрибкоподібно. Проте гравітаційні сили такої властивості не мають. Отже, результатом розгляду темних смуг повинен бути, насамперед, висновок про хвильову природу світла без посилання на те, що світло - це різновид електромагнітних хвиль, тобто незалежно від теорії Д. К. Максвела.
Більше того, наявність темних смуг дає підставу зауважити, що, мабуть, дифракція - це не просто огинання, це - складне явище. Дослідження дифракційних закономірностей можна провести за кожною з двох вищезгаданих схем спостереження явища, розглянувши такі випадки, коли: а) розміри отвору (щілини) та його відстань до екрана однакова; б) не змінюючи діаметра отвору і його місцезнаходження, наближають і віддаляють від нього екран спостереження; в) змінюють діаметр отвору за постійної відстані від отвору до екрана спостереження. Якщо, до того ж, змінювати відстань від джерела світла до отвору, розрізняють дифракцію Френеля і Фраунгофера. З дифракцією пов`язані різні варіації теоретичних і практичних задач, які не можна пояснити, використовуючи лише принцип Гюйгенса. І тут на допомогу приходить принцип Гюйгенса-Френеля, згідно з яким щілина, якої досягає фронт хвилі, стає джерелом нових вторинних хвиль (на рис.3 їх дванадцять). Хвилі когерентні між собою. Амплітуда і фаза хвилі у будь-якій точці Р- простору - це результат інтерференції хвиль, створених вторинними джерелами (на
рис. 5 джерела 1 і 7, 2 і 8 тощо).
Оскільки кожна пара осциляторів дає мінімум інтерференції у точці Р, робимо висновок, що в цій точці має місце мінімум дифракції від щілини як множини джерел. Таким чином, при дифракції інтерферують дифраговані пучки світла. Дифракція - відхилення світла від прямолінійного поширення - обумовлена суперпозицією множини когерентних джерел. Користуючись графічною моделлю (рис.2) фізичного явища (дифракція), можна встановити умову першого мінімуму від щілини:
(3)де
- кутова півширина центрального максимуму. Крім того, за її допомогою можна ввести поняття про зони Френеля і розглянути дифракційні закономірності.Розглянемо теорію дифракції від однієї щілини. Теорія дифракції на одній щілині (отворі) має велике практичне значення при проектуванні мікроскопів і телескопів, вона потрібна для пояснення роздільної здатності дифракційних граток, а також для розуміння дифракційної природи оптичного зображення тощо. Якщо “вилучити” непрозорий проміжок між нескінченно тонкими щілинами, можна отримати щілину певної ширини a. Нехай ми маємо своєрідну щілину, що складається з n = 12 джерел, які випромінюють світлові хвилі. Відстань між крайніми джерелами дорівнює a, а між сусідніми — a1, причому l > a (мал.5). Дослідимо зміну картини, що спостерігається на екрані від щілини певної ширини, залежно від просторового кута при незмінному положенні екрана і щілини. Ті промені, для яких q =0, збираються лінзою або інтерферують у нескінченності в точці Р0 , оскільки сумарна напруженість Е1 =n E0 . Виберемо такий напрям поширення променів, при якому різниця ходу між крайнім і середнім променями дорівнює
. Тоді між крайніми променями ця різниця дорівнює l. З мал.5 видно, що від першого осцилятора, який знаходиться у нижній половині щілини, результуюча напруженість дорівнює нулю. Крім того, такі пари осциляторів, як 2 і 8, 3 і 9, 4 і 10, 5 і 11, 6 і 12 в точці Р також створюють результуючу напруженість, що дорівнює нулю (коливання від цих пар осциляторів різняться на 180°). З мал. 5 видно, що a=a1 n, бо n>>1. Умову першого мінімуму (“нуля” інтенсивності хвилі) можна записати так: (4)Тому в напрямі, для якого різниця ходу між крайнім і середнім променями дорівнює половині довжини хвилі, тобто
, має місце перший мінімум. Умову першого мінімуму перепишемо так: a sinq1 = l .