Смекни!
smekni.com

Вивчення дифракції світла (стр. 4 из 7)

(14)

При збільшенні числа щілин ширина дифракційних максимумів звужується, завдяки чому можна точніше виміряти довжину світлової хвилі за дифракційними спектрами.

Отже, дифракція спостерігається, коли ширина щілини набагато менша від ширини головного максимуму на екрані, тобто коли

:
, або
.

Останній вираз є допустимою умовою спостереження дифракції; вона залежить від співвідношення довжини хвилі

, розмірів щілини (отвору) і відстані від неї до місця спостереження. Нагадаємо, що необхідною умовою спостереження дифракції є наявність просторового когерентного джерела світла.

Дифракція не спостерігається, якщо ширина головного максимуму мало відрізняється від ширини щілини (отвору), тобто коли

. У цьому разі використовують наближення геометричної оптики. Ширина щілини, за якої на екрані спостерігається найвужча смужка світла.
.

Розділ 3.

Дифракційна природа оптичного зображення

3.1. Критерій Релея

Дослід Аббе свідчить про дифракційну природу оптичного зображення, якщо на капронову сітку направляти розширений пучок лазерного випромінювання на екрані спостерігають її зображення. Потім за сіткою встановлюють лінзу з фокусною відстанню F=50 мм. В фокусі цієї лінзи вертикально розміщують щілину. При зменшенні ширини щілини помічають, що вертикальні смуги на екрані зникають. Далі щілину встановлюємо горизонтально. Наслідком цього є поява на екрані вертикальних смуг. Якщо ж щілину поставити під кутом 450 до горизонту, на екрані з’являться смуги під кутом 1350 до горизонту.

Які обмеження накладає хвильова природа світла на розрізнене сприймання двох джерел? Під роздільною здатністю оптичної системи розуміють її властивість давати роздільне зображення дрібних деталей об’єкта без порушення подібності їх предмету. Два точкових джерела сприймаються роздільно, якщо вони попадають, насамперед, на різні світлочутливі клітини на сітківці ока, роздільна здатність ока, в свою чергу, обмежується дифракційними явищами і зв`язана з розмірами зрачка. Зображення предметів складається із зображення сукупності точок і створюється за допомогою оптичних приладів. Вони складаються з оптичних деталей, розміри яких обмежені. Тому, наприклад, будь-який об`єктив, по суті, слугує дифракційним отвором.

У відповідності з двома схемами спостереження дифракції розрізняють оптичні прилади, у яких зображення створюються незалежно від присутності людини, і прилади, що працюють разом з оком людини. В першому випадку приймачами світла можуть бути фотопластинки, фотоопори, екрани, на яких дістають дійсне зображення. У другому випадку приймачем світла є око людини, яке може сприймати уявне зображення. Щоб узгодити ці прилади, треба знати той єдиний критерій, за яким дані, одержані в дійсній і уявній картині, будуть співпадати.

Нехай ми спостерігаємо досить віддалені точкові джерела світла S1 i S2 (фари автомобіля, що наближається, або дві зірки, на які направили об`єктив телескопа) з такої відстані, що їх дифракційні картини майже перекриваються або перекривають одна одну так, що їх максимуми співпадають. Тоді точки S1 i S2 зливаються і роздільно не сприймаються. Навіть якщо вони і попадають на різні світлочутливі точки ока, ми не бачимо їх нарізно. При наближенні автомобіля наступає момент, коли ми можемо сказати, що бачимо не одне, а два зображення. Щоправда, для різних спостерігачів він наступає дещо по-різному.

Тому загальноприйнятим став критерій розділення Релея. Він стосується в однаковій мірі всіх приладів, бо зумовлюється роздільною здатністю ока. Дві точки ми бачимо нарізно, якщо вони сприймаються різними світлочутливими клітинами на сітківці ока, а це наступає, коли, як встановив Релей, центр дифракційного диска однієї співпадає з мінімумом на дифракційній картині другої. Іншими словами, умовою або межею розділення (можливості бачити нарізно) стала кутова півширина першого мінімуму дифракції від щілини (3) і отвору (

). На розділення двох джерел не впливає зміна їх розмірів, якщо мінімальна відстань між ними підтримується постійною: роздільна здатність визначається дифракцією світла від внутрішніх шарів. Тим самим, дифракція обмежує збільшення оптичними приладами, бо в межах
будь-яке збільшення означає лише збільшення дифракційної картини без збереження подібності об`єкта. Однак, хоча дифракція обмежує збільшення і роздільну здатність, завдяки їй установлюється чітка межа розділення дифракційних зображень оптичними приладами.

3.2. Роздільна здатність мікроскопа і телескопа

Ми розглянули критерій Релея, який дає змогу розрізнити предмети за їх дифракційними зображеннями, не торкаючись питання про те, як утворюються зображення самих предметів. Критерій Релея в однаковій мірі відноситься до всіх оптичних приладів, основне призначення яких полягає у створенні зображень предметів, і стосується самосвітних і освітлювальних об’єктів. Теорію роздільної здатності для мікроскопа розробив німецький учений Ернст Аббе (1840-1905), який указав на різницю між утворенням зображення освітлених точок, і тих, що світяться. Завдяки його працям і діяльності організатора оптичного виробництва Карла Цейса (1816-1888) інструментальний арсенал оптики вийшов на той рівень, який відомий нам і сьогодні. Що нового приносить теорія Аббе до критерію Релея? Коротко про це можна сказати так. Для того , щоб розрізнити дві світні некогерентні точки в телескопі, достатня участь променів нульового максимуму, а щоб побачити дві освітлювані когерентні точки в мікроскопі, необхідна участь принаймні і променів першого максимуму.

Якщо для ока і телескопа мінімальна кутова відстань між точками, які можуть бути розділені як окремі, становить

, то при тій же кутовій відстані точок у мікроскопі ми їх не побачимо, поки кожна з них, просто кажучи, не утворить у ньому зображення. Пояснити це означає вияснити:

1) за рахунок чого утворюється зображення предметів у мікроскопі;

2) як забезпечити подібність зображення його об’єкту.

Згадаймо, як утворюється зображення світних точок за законами геометричної оптики (рис. 10). Нехай точки А, В, С від об’ємного джерела, спряжені з екраном (друге положення екрана). Якщо пересунути екран вліво в перше положення (або наблизити їх до екрана), точки відобразяться у вигляді розмитих кружечків. На шляху променів установлюють діафрагму. Очевидно, що зменшуючи діаметр діафрагми, можна

зменшити кружечки до розмірів, коли вони будуть здаватися для ока точковими – зображення стане чітким.

Однак геометрична оптика не в змозі пояснити утворення зображень у мікроскопі. В мікроскопі ми насправді спостерігаємо тінь від предметів. Унаслідок огинання світлом малої перешкоди ми її не бачимо, бо дифраговані промені не доходять до екрану, і тінь не утворюється, яке б велике збільшення ми не здійснювали.

За допомогою мікроскопа розглядають об’єкти, освітлені прохідним світлом. Але освітлені точки освітлюються одним і тим же точковим джерелом. Тому хвилі від них когерентні і шляхом дифракції (огинання) чи відбивання вони, з’єднуючись, інтерферують як і в інтерференційній (дифракційній) гратці, даючи світло чи темряву в залежності від різниці ходу. Тому освітлені об’єкти можна розглядати як дифракційну гратку, період якої дорівнює характерному розміру деталей об’єкта.


На рис. 11 схематично поданий випадок, коли на деталях об’єкта (


точки А, В, С) когерентні хвилі зазнають розсіяння (дифракція) і виходять під кутами, які задовольняють умові

, де n – показник заломлення середовища, d – характерний розмір деталей об’єкта (або дифракційної гратки ), який визначає кут дифракції
; k=0,1,2… - порядок максимуму. Далі вони, у відповідності з принципом Гюйгенса-Френеля попарно інтерферують і в точках 0, 1, 2 утворюють дифракційні максимуми точок А, В, С (первинне, як назвав його Аббе, зображення). Вторинне зображення кожної із точок на спряженій площині (екран Е) утворюється внаслідок взаємодії променів від усіх 0, 1, 2 максимумів первинного або дифракційного зображення.

Якщо спробувати збільшити різкість зображення і з допомогою діафрагми або щілини перекрити побічні максимуми, вторинне зображення на екрані зникне. Нема дифракції - нема зображення. Отже, зображення має дифракційну природу. Дифракція – явище, яке забезпечує зображення предметів.