Смекни!
smekni.com

Вивчення дифракції світла (стр. 5 из 7)

Для одержання зображень, цілком подібних об’єкту, треба, щоб у його створенні брали участь промені, які йдуть від усіх дифракційних максимумів. Особливе значення мають максимуми перших порядків. Вони розміщені під малими кутами і зумовлені великими, більш значними деталями об’єкта. При обмеженні числа максимумів різкість зображення втрачається.

Але дифракційні максимуми, як первинні зображення точок, утворюються завдяки тому, що дифраговані пучки перетворюються у збіжні лінзою об’єктива.

Для цього об’єкт якомога ближче розміщують до короткофокусного об’єктива мікроскопа (короткофокусний об’єктив дає більше збільшення, ніж довгофокусний, бо

). Чим ближче деталь до об’єктива, тим більшим буде кут, обмежений променями, які беруть участь у зображенні, тим більше променів створюють зображення. Прийнято говорити, що при цьому зростає апертурний кут
. Кут
, під яким із досліджуваної точки видно радіус лінзи, називають апертурним (це кут між віссю об’єктива і крайніми променями). З рис. 12 видно, що

, (15)

де

- апертурний кут,
- діаметр лінзи.

Разом з тим чим менший предмет, тим більше відхилення світла від прямолінійного поширення, тим більший кут дифракції
він зумовлює.

Якщо апертурний кут

об’єктива перевищує кут розходження
, при якому в зображенні предмета беруть участь хоча б промені першого максимуму, зображення буде геометрично подібним до предмета. Під роздільною здатністю мікроскопа розуміють істинну відстань s між двома точками, які тільки-тільки вдається розділити:

(16)

Перш ніж розділити дві точки, треба забезпечити їх зображення. У формулі (16)

- апертурний кут, який охоплює дифраговані пучки, побічних максимумів, що створюють зображення;
- кут, при якому ми бачимо дві точки розділеними. Формула водночас визначає умови зображення і розділення точок.

Якщо між препаратом і об’єктивом внести краплину кедрового масла, показник заломлення якого

, то відстань
зменшується, а, отже, роздільна здатність мікроскопа збільшується. Справді, чим більший показник заломлення, тим менший кут заломлення світла, і при тому ж апертурному куті у створенні зображення точки будуть брати участь максимуми більших порядків. Тому

(17)

3.3 Дифракційна гратка

Традиційно вивченню дифракційної гратки передує розгляд питання про інтерференцію в тонких плівках, когерентні промені від яких утворюються завдяки поділу амплітуди світлового пучка. Інтерференція від прозорих діелектричних прошарків відноситься до інтерференції від протяжних джерел, і відповідний навчальний матеріал не може бути пропедевтичним до пояснення дії дифракційної гратки. Справді, покладемо дифракційну гратку на кодоскоп і спроектуємо її зображення на екран або ж будемо розглядати світло від електричної лампи через решітку. Ніякої дифракційної картини ми не побачимо, бо світло від різних ділянок великого джерела не має властивості просторової когерентності.

Поставимо на шляху променів, що падають на дифракційну гратку, щілину. На екрані з’явиться дифракційний спектр. Отже, необхідною умовою виникнення дифракційних спектрів є наявність когерентних джерел світла у вигляді вузьких щілин.

Дифракційні гратки самі складаються із системи щілин шириною

і розділених непрозорими проміжками завширшки
. Пропускаючи когерентне світло, дифракційні спектри, інтенсивність світла в будь-якій точці екрана визначається результатом інтерференції дифракційних когерентних вторинних хвиль, які поширюються від різних ділянок однієї щілини і від різних щілин. Тому щілину не можна вважати нескінченною точкою.

Вивчення будь-якої складної системи спрощується, якщо розділити її на складові частини і вивчати кожну частину окремо.

Оскільки дифракційна гратка – це сукупність подвійних щілин, розміщених одна за одною, а кожну пару широких щілин можна зобразити як сукупність відповідних еквівалентних вузьких ділянок цих щілин, то в якості складової або “найпростішої комірки” дифракційної гратки можуть виступати дві вузькі щілини, відстань між якими

, розмірами яких нехтують. Тому аналіз явища дифракції від двох широких щілин, а отже, і гратки, нагадує, по-перше, аналізінтерференційної картини від двох нескінченно тонких щілин за схемою Юнга, коли
.

Нагадаємо картину інтерференції від двох вузьких щілин (Рис. 4). Ширина смуг і їх інтенсивність однакова. Умова максимуму інтерференції виконується, коли

(18),

бо

, а умова мінімуму забезпечується, якщо різниця ходу

(19)

У випадку, коли

, положення максимумів інтерференції від двох нескінченно тонких щілин (18) співпадають із положенням максимумів інтерференції від двох і багатьох щілин.

(20)

де

- порядок дифракції спектру.

Отже, якщо в даному напрямі різниця ходу між кожною парою відповідних вузьких ділянок сусідніх щілин дорівнює цілому числу довжин хвиль, то від гратки в цілому буде спостерігатися в цьому напрямі дифракційний максимум. Інтерференційне підсилення дифракційних хвиль від відповідних нескінченно тонких щілин в такому випадку називають повним.

По-друге, елементом дифракційної гратки може бути сама щілина шириною

, яку не можна назвати нескінченно тонкою, бо в цьому разі поза увагою залишається закономірність дифракції від щілини. Умова мінімуму для дифракційної гратки співпадає з умовою мінімуму для однієї щілини, бо якщо в даному напрямі від кожної щілини світла нема, то і від багатьох щілин світла не буде.

Якщо покласти на кодоскоп лист темного паперу із щілиною, на екрані одержимо чітке її зображення, а коли направити на ту ж щілину світло від іншої вузької щілини, можна спостерігати явище дифракції від щілини.

Картина дифракції від щілини і розподіл інтенсивності світла подані на мал. 4. Видно що між двома першими мінімумами розміщується нульовий дифракційний максимум ширина якого простягається від -

до +
, тобто вдвічі більша від наступних максимумів. Розподіл інтенсивності світла від однієї щілини описується залежністю:

, де
(21)

Оскільки кожна щілина є елементом дифракційної гратки, нагадаємо закономірності дифракції від щілини, а також способи їх встановлення, з тим, щоб можна було поширити на дифракційну гратку. Умову мінімуму дифракції від щілини шириною

в точці
екрана, різниця ходу до якої між крайніми променями щілини
,
і т. д., визначають за принципом Гюйгенса-Френеля. Однак вибір числа вторинних ідеальних джерел цілком довільний. Якщо таких джерел чотири, то хвилі від першого третього, другого і четвертого знаходяться у протифазі і їх дія компенсується. Різниця ходу між сусідніми променями
, а різниця фаз
. Коли вибрати шість джерел, то у протифазі знаходиться такі пари джерел, як: 1 і 3, 2 і 4, 3 і 6. різниця ходу між сусідніми хвилями
, а різниця фаз
. Виберемо 12 джерел. В цьому разі компенсується дія таких пар як 1 і 7, 2 і 8, 3 і 9, 4 і 10, 5 і 11, 6 і 12. Різниця ходу між сусідніми хвилями
, а різниця фаз
.