Зупинимось коротко на явищі параметричного резонансу. Виявляється, що існують інші види зовнішніх взаємодій, з допомогою яких можна значно збільшити амплітуду коливань. Цей вид взаємодій полягає в тому, що в такт коливань періодично змінюють один із параметрів коливальної системи. Так наприклад збільшують довжину математичного маятника l, коли він перебуває в крайніх положеннях і дещо зменшують її, коли маятник проходить положення рівноваги, від цього маятник почне сильно розгойдуватись, амплітуда коливань буде швидко зростати, тобто наступить явище параметричного резонансу.
Збільшення енергії маятника відбувається за рахунок виконання механічної роботи по зміні довжини маятника. Сила тяжіння маятника в цьому випадку є різною, ─ меншою в крайніх положеннях і більшою при проходженні маятником положення рівноваги. Від’ємна робота, яку виконують зовнішні сили по збільшенню довжини маятника є меншою за додатну роботу по зменшенню довжини маятника в положенні рівноваги. За час одного повного коливання (період коливань) сумарна робота по зміні довжини маятника є більшою за нуль.
Прикладом параметричного резонансу є коливання гойдалки. Без будь-яких зовнішніх впливів дитина, перебуваючи на гойдалці, сама здатна збільшувати амплітуду коливань. Потрібно лише в крайніх положеннях присідати, а в положенні рівноваги ─ підніматись. В цьому випадку коливальна система поповнюється енергією за рахунок мускульної сили ніг.
Явища резонансу можуть бути як шкідливими, так і корисними. Наприклад, при конструюванні машин і різного роду споруд необхідно, щоб їх власна частота коливань не збігалася з частотою можливих зовнішніх впливів, інакше можуть виникнути вібрації, які приведуть до значних руйнувань. З іншого боку, наявність резонансу дозволяє знайти навіть дуже слабкі коливання, якщо їх частота збігається з частотою власних коливань приладу. Так, телебачення, радіотехніка, прикладна акустика, що сприймають електричні коливання, засновані на використанні явища резонансу.
3. Змінний струм
Вимушені електромагнітні коливання, які виникають в ланцюзі, що містить резистор, котушку індуктивності і конденсатор, можна розглядати як змінний струм. В той же час змінний струм вважають квазістаціонарним, так як миттєві значення сили струму в усіх перетинах ланцюга практично однакові. У порівнянні із швидкістю світла будь які зміни в ланцюзі відбуваються досить повільно. Для миттєвих значень квазістаціонарних струмів виконуються закон Ома і правила Кирхгофа.
Розглянемо послідовно процеси, які відбуваються в ланцюзі, який містить резистор, котушку індуктивності і конденсатор при вмиканні його до джерела змінної напруги
(19)де
— амплітуда напруги.1. Розглянемо ланцюг, в який ввімкнули лише резистор R, а індуктивність L і ємність С ─ відсутні (рис.5,а).
Рис.5, а,б
При виконанні умови квазістаціонарності струм через резистор R визначається законом Ома:
де амплітуда сили струму дорівнює
На векторній діаграмі (рис. 5,б) показано, що зсув фаз між напругою і струмом в ланцюзі, в якому є лише резистор R, дорівнює нулю.
2. Розглянемо випадок, коли змінний струм тече через котушку індуктивності L, в цьому випадку резистор R і ємність С в ланцюзі відсутні (рис. 6,а).
Якщо до ланцюга прикладена змінна напруга (19), то через котушку потече змінний струм, в результаті чого в ній виникне е.р.с. самоіндукції E =
.Тоді закон Ома для даної ділянки ланцюга буде мати вигляд
звідки
(20)Рис. 6,а,б
Оскільки зовнішня напруга прикладена до котушки індуктивності, то
(21)визначає спад напруги на котушці. З рівняння (20) випливає, що
або після інтегрування, з урахуванням того, що постійна інтегрування дорівнює нулю, одержимо
(22)де
Величина
(23)називається реактивним індуктивним опором (або індуктивним опором).
З виразу (22) випливає, що для постійного струму, коли
котушка індуктивності не чинить опору. Підстановка значення у вираз (20) з врахуванням (21) приводить до наступного значення спаду напруги на котушці індуктивності: (24)Порівнюючи вирази (22) і (24) приходимо до висновку, що спад напруги ULвипереджає по фазі струм I, який тече через котушку, на π/2, що й показано на векторній діаграмі (рис. 6, б).
3. Нехай змінний струм в ланцюзі тече через конденсатор ємністю С, в цьому випадку активний опір R і котушка індуктивності L відсутні. (рис. 7,а).
Рис.7, а,б
Якщо змінна напруга (19) прикладена до конденсатора то, в результаті постійного його перезарядження, у ланцюзі потече змінний струм. Так як вся зовнішня напруга прикладена до конденсатора, а опором підвідних проводів можна знехтувати, то
Сила струму.
(25)де
Величина
називається реактивним або ємнісним опором. Для постійного струму (ω = 0) Rc = , тобто постійний струм через конденсатор текти не може. Спад напруги на конденсаторі у нашому випадку буде дорівнювати (26)Порівнюючи вирази (25) і (26) приходимо до висновку, що спад напруги Uс відстає по фазі від струму, який тече через конденсатор на π/2. Це показано на векторній діаграмі (рис. 7, б).
Розглянемо ланцюг змінного струму, що містить послідовно ввімкнуті резистор, котушку індуктивності і конденсатор. На рис. 8, а показаний ланцюг, що містить резистор опором R, котушку індуктивністю L і конденсатор ємністю С, на кінці якого подається змінна напруга (19).
У ланцюзі виникне змінний струм, який викличе на всіх елементах ланцюга відповідні спади напруг UR, ULі Uc. На рис. 8,б показана векторна діаграма амплітуд спадів напруг на резисторі UR, котушці
і конденсаторі Uc.Рис. 8,а,б
Результуюча амплітуда Umприкладеної напруги повинна бути рівною геометричній сумі амплітуд всіх спадів напруг. Як видно з рис. 8,б, кут φ визначає різницю фаз між напругою і силою струму. З рисунка випливає, що
(27)З прямокутного трикутника одержуємо, що
,звідки амплітуда сили струму буде дорівнювати
(28)Отже, якщо напруга в ланцюзі змінюється за законом
то в ланцюзі тече струм
(29)де φ і Im визначаються відповідно формулами (3.27) і (3.28). Величина
(30)називається повним опором ланцюга, а величина
називається реактивним опором.
Розглянемо окремий випадок, коли в ланцюзі відсутній конденсатор. У цьому випадку спад напруг URі ULв сумі дорівнює прикладеній напрузі U. Векторна діаграма для даного випадку показана на рис. 9, з якої видно, що