Смекни!
smekni.com

Вимушені механічні й електромагнітні коливання (стр. 1 из 3)

РЕФЕРАТ

на тему:”Вимушені механічні й електромагнітні коливання”


План

1. Диференціальне рівняння вимушених коливань і його розв’язування

2. Амплітуда і фаза вимушених коливань (механічних і електромагнітних). Резонанс. Резонансні криві. Параметриний резонанс

3. Змінний струм.

4. Резонанс напруг


1. Диференціальне рівняння вимушених коливань і його розв’язування

Щоб у реальній коливальній системі одержати незатухаючі коливання, треба компенсувати цій системі втрати енергії. Таку компенсацію можна здійснити за допомогою якого-небудь періодично діючого фактора X(t), який змінюється за гармонічним законом:

Для механічних коливань пружинного маятника роль X(t) відіграє зовнішня вимушуючи сила

(1)

З урахуванням цієї сили закон руху пружинного маятника запишеться у вигляді

Якщо скористатися позначеннями

,
, то прийдемо до рівняння

(2)

Рівняння (2) є неоднорідним лінійним диференціальним рівнянням другого порядку. Розв’язок такого рівняння складається з двох частин, загального розв’язку відповідного рівняння без правої сторони і часткового розв’язку цього рівняння з правою стороною, тобто

де A0 ─ амплітуда зміщення в початковий момент часу (t=0); А ─ амплі-туда коливань, яка установиться через деякий час.

Через деякий час t1, завдяки дії вимушеної сили F0, амплітуда коливань досягне максимального значення (рис. 1). З цього моменту часу розв’язком рівняння (2) буде лише функція

(3)

Рис. 1

Відповідні похідні від (3) підставимо в рівняння (2), одержимо

(4)

У виразі (4) сталі величини А і ω повинні мати такі значення, щоб гармонічна функція

дорівнювала сумі трьох гармонічних функцій, які стоять в лівій частині рівняння. Для виконання цієї умови, необхідно щоб сума трьох векторів при відповідних косинусах в лівій частині (4) дорівнювала вектору, який стоїть біля косинуса в правій частині. Однак вектори
і
напрямлені по одній лінії, але в різні боки. Вектор
напрямлений перпендикулярно до перших двох. Зазначена вище умова може бути реалізована за допомогою векторної діаграми (рис. 2).

Векторна діаграма дає можливість визначити амплітуду і початкову фазу вимушених коливань. З діаграми видно, що

. (5)

Рис. 2

Звідки амплітуда вимушених коливань буде дорівнювати

(6)

Початкова фаза вимушених коливань, як видно з векторної діаграми, дорівнює

(7)

З урахуванням співвідношень (6) і (7) розв’язок диференціального рівняння вимушених коливань (2) матиме вигляд

(8)

Якщо розглянути електричний коливальний контур, то роль змінної величини в цьому випадку буде мати е.р.с., або змінна напруга

(9)

Диференціальне рівняння вимушених коливань в коливальному контурі, з урахуванням (9), буде мати вигляд

(10)

Використовуючи позначення, аналогічні до (2), прийдемо до рівняння

(11)

Розв’язком рівняння (11) є функція, аналогічна до (3), тобто

(12)

Амплітуда заряду вимушених електромагнітних коливань буде дорівнювати

. (13)

Підстановка значень

і
в (13) дає значення амплітуди електромагнітних коливань в такому вигляді

(14)

Похідна за часом від (12) дає можливість одержати в коливальному контурі закон зміни електричного струму

,

де

─ максимальний струм у коливальному контурі.

2. Амплітуда і фаза вимушених коливань (механічних і електромагнітних). Резонанс. Резонансні криві. Парамет-ричний резонанс

Розглянемо залежність амплітуди А вимушених механічних або електромагнітних коливань від частоти ω. Механічні й електромагнітні коливання будемо розглядати одночасно, називаючи коливну величину або зміщенням (х) коливного тіла від положення рівноваги, або зарядом (Q) конденсатора.

З формули (3.6) випливає, що амплітуда А зміщення має максимум. Щоб визначити резонансну частоту

— частоту, при якій амплітуда А зміщення досягає максимуму, — потрібно дослідити на максимум функцію
. Диференціюємо підкореневий вираз цієї функції по ω і прирівнюємо його до нуля:

,

Ця рівність виконується при двох умовах

і
фізичний зміст яких має лише позитивне значення. Отже, резонансна частота буде дорівнювати

(15)

Явище різкого зростання амплітуди вимушених коливань при наближенні частоти вимушеної сили до

, називається резонансом (відповідно механічним або електричним). У випадку коли
значення
практично збігається з власною частотою
коливної системи. Підставляючи (15) у формулу (6), одержимо

(16)

На рис. 3 наведені залежності амплітуди вимушених коливань від частоти при різних значеннях β. З виразів (15) і (16) випливає, що чим менше β, тим вище і правіше лежить максимум даної кривої. Якщо

, то всі криві (див. рис.3) сходяться в одній точці, яка відповідає, відмінному від нуля граничному значенню амплітуди
так званому статичному відхиленню.

Рис.3

У випадку електромагнітних коливань

. Якщо
то всі криві мають асимптотичне наближення до нуля. Показані на рис. 3 криві називається резонансними кривими.

З формули (16) випливає, що при малому затуханні

резонансна амплітуда зміщення буде мати вигляд

. (17)

Поділимо значення резонансної амплітуди (17) на статичне значе-ння амплітуди

, одержимо добротність коливальної системи

(18)

де

─ логарифмічний декремент затухання. Як видно з (18), добротність коливальної системи характеризує її резонансні властивості. Чим більше число добротності, тим більша резонансна амплітуда.

Рис. 4

Залежність φ від ω при різних коефіцієнтах β графічно показана на рис. 4, з якого випливає, що при зміні ω змінюється і зсув фаз φ. З формули (7) видно, що при ω = 0, φ = 0, а при

незалежно від значення коефіцієнта затухання β, φ = π/2, тобто сила випереджає по фазі коливання на π/2. При подальшому збільшенні ω зсув фаз зростає і при
,
, тобто фаза коливань майже протилежна до фази зовнішньої сили. Сімейство кривих, зображених на рис. 4, називається фазовими резонансними характеристиками.