Смекни!
smekni.com

Влияние схем включения подогревателей энергоблока на тепловую эффективность подогрева (стр. 11 из 13)

Коэффициент теплоотдачи от конденсирующегося пара к стенкам трубок

3.2.8. Коэффициент теплоотдачи от стенок труб к конденсату

Для расчета теплообмена необходимо выбрать скорость движения среды. Увеличение скорости улучшает условия теплообмена, что приводит к снижению площади требуемой поверхности, т.е. к снижению стоимости регенеративных подогревателей. В то же время с увеличением скорости возрастает гидравлическое сопротивление движению жидкости.

Принимаем скорость движения воды в трубах

Число Рейнольдса для конденсата, движущегося внутри труб

Коэффициент теплоотдачи

- от стенок труб к конденсату

3.2.9. Коэффициент теплопередачи

Для тонкостенных труб, применяемых в регенеративных подогревателях, с достаточной степенью точности можно определить коэффициент теплопередачи по формуле для плоской стенки:

Пересчет площади поверхности теплообмена

3.3. Определение основных геометрических характеристик.

При конструкторском расчете регенеративных подогревателей некоторые их геометрические характеристики (число труб, шаг их, диаметр трубной доски и ряд других) должны быть предварительно выбраны.

При принятой скорости движения воды и известных параметрах ее на входе в подогреватель число труб при одном ходе:

При четырехходовом движении воды общее число трубных концов, развальцованных в трубной доске:

Средняя длина труб:

Шаг труб при размещении их в трубной доске

Принимаем диаметр трубной доски, соответствующий внутреннему диаметру корпуса из прототипа Dвн=1,6 м.

Коэффициент заполнения трубной доски:

Площадь трубной доски:

3.4. Гидравлический расчет.

Задачей гидравлического расчета подогревателей является определение их гидравлического сопротивления. Для любого элемента или участка подогревателя гидравлическое сопротивление:

.

Здесь

– определяет гидравлические потери, возникающие при движении теплоносителя за счет трения о стенки труб,
– гидравлические потери при движении теплоносителя, вызванные местными сопротивлениями (поворотами, сужениями или расширениями и др).

Значение коэффициента сопротивления трения l зависит от шероховатости стенок труб D и от режима движения теплоносителя, определяемого числом Re. С достаточной степенью точности это значение может быть определено из выражения:

,

где D для стальных труб равна 0,2 мм, для латунных – 0,01 мм.

Расчет ведем по методике [5,6].

3.4.1. Участок входной и выходной камеры

Принимаем скорость воды в патрубках подвода и отвода

Внутренний диаметр патрубков

Принимаем стандартный диаметр

Уточняем скорость

Число Рейнольдса для потока воды в патрубках

Принимаем длину патрубка

Коэффициент трения

Коэффициент сопротивления трения

Суммарный коэффициент сопротивления участка входа (выхода), с учетом коэффициент сопротивления поворота во входной камере xм=1,5

Потеря давления воды на участке входа (выхода)

3.4.2. Участок трубной системы

Коэффициент трения в трубках подогревателя

Коэффициент сопротивления трения

Местные коэффициенты сопротивления на участке трубной системы:

· входа в трубную систему xвх.тр=0,5

· поворота потока на 180° в трубах xпов.тр=0,5

· выхода из трубок xвых.тр=1

· поворота потока в промежуточной камере xпов_к=2,5

Суммарный коэффициент сопротивления трубной системы

Потеря давления воды на втором участке

Общее гидравлическое сопротивление подогревателя

3.5. Расчет на прочность.

Задачей расчета является определение минимально допустимой толщины стенки отдельных элементов, гарантирующей их достаточную прочность в условиях длительной эксплуатации теплообменника при номинальных (расчетных) параметрах теплоносителей. Исходными при этом являются данные теплового, конструкторского и гидравлического расчетов.

Расчет ведем по методики [7].

Расчетное давление (наибольшее одностороннее рабочее давление одного из теплоносителей) p=1,25 МПа.

Рассчитаем номинальное допустимое напряжение (Сталь 20, при температуре стенки tст=141.6°C), применяя линейную интерполяцию:

Внутренний диаметр корпуса определили ранее Dвн=1600 мм, а высоту днища определяем из прототипа hв=443 мм.

3.5.1. Расчет толщины стенки корпуса

Допускаемое напряжение

Коэффициент прочности для регенеративного подогревателя j=1.

Принимаем значение добавки к расчётной толщине, учитывающей коррозию металла и отклонение при изготовлении C=1 мм.

Номинальная толщина стенки корпуса, подверженная наружному давлению, должна быть не менее определенной по формуле:

принимаем dст=10 мм.

Наибольший допустимый диаметр неукрепленного отверстия в корпусе рассчитывается по формуле:

В расчете номинальным является внутренний диаметр, поэтому поправка рассчитывается следующим образом:

3.5.2. Расчет толщины стенки днища

Допускаемое напряжение

Коэффициент учитывающий ослабление неукрепленным отверстием рассчитывается по формуле, в зависимости от значения комплекса:

Номинальная толщина стенки выпуклых днищ, имеющих неукрепленное отверстие, должна быть не менее рассчитываемой по формуле:

принимаем dД=12 мм.

Условия применимости формулы выполнены:

Наибольший диаметр неукрепленного отверстия

причем

3.5.3. Расчет трубной доски

Коэффициент K=1, потому что трубная доска закреплена фланцами между корпусом и крышкой.

Допустимое напряжение для трубной доски:

Диаметр отверстий в трубной доске

Коэффициент прочности трубной доски (при разбивке по треугольнику)