Смекни!
smekni.com

Влияние схем включения подогревателей энергоблока на тепловую эффективность подогрева (стр. 1 из 13)

Министерство образования и науки Российской Федерации
Факультет
Кафедра

КУРСОВАЯ РАБОТА

по направлению

– Электроэнергетика

Влияние схем включения подогревателей энергоблока на тепловую

эффективность подогрева

Студент ( )

Руководитель ( )


АННОТАЦИЯ

Курсовая работа на тему

___________________________________________________________________________________________________________________________________

_______________________________________________________________

состоит из _____ стр. текста, _____ рис., _____ таблиц, _____ листов чертежей.

БЛОЧНАЯ КЭС, ПРОМПЕРЕГРЕВ, ТУРБОПРИВОД, ПОКАЗАТЕЛИ ЭКОНОМИЧНОСТИ, ВЫБОР ОБОРУДОВАНИЯ, РАСЧЕТ ПНД

В общей части работы приведены расчет принципиальной тепловой схемы энергоблока мощностью 250 МВТ, определение показателей тепловой экономичности, выбор основного и вспомогательного оборудования энергоблока (котельной и турбинной установок).

В конструкторской части работы были проведены расчеты тепловой, гидравлический и механический расчеты подогревателя низкого давления.

В индивидуальном задании рассмотрены вопросы замены одного подогревателей низкого давления смешивающего типа на поверхностный и влияние схем включения подогревателей на тепловую эффективность регенеративного подогрева.

В результате, показатели экономичности снизились, что в конечном итоге привело к увеличению расходов топлива.


СОДЕРЖАНИЕ

ВВЕДЕНИЕ 5

Глава 1. Расчёт принципиальной схемы ТЭС. 7

1.1. Составление принципиальной тепловой схемы. 7

1.2. Построение процесса расширения водяного пара в проточной части турбины. 10

1.3. Распределение регенеративного подогрева по ступеням. 15

1.4. Определение энергетических показателей конденсационной паротурбинной установки. 31

Глава 2. Выбор основного и вспомогательного оборудования 34

2.1. Выбор турбоустановки. 34

2.2. Выбор парового котла. 34

2.3. Выбор оборудования пылеприготовления. 36

2.3.1. Выбор типа мельниц. 36

2.3.2. Выбор схемы пылеприготовления. 37

2.3.3. Выбор числа и производительности мельницы. 37

2.4. Выбор тягодутьевых машин. 38

2.4.1. Выбор дутьевых вентиляторов. 39

2.4.2. Выбор дымососов. 40

2.5. Выбор насосов. 42

2.5.1. Выбор питательных насосов. 42

2.5.2 Выбор бустерных насосов. 44

2.5.3 Выбор конденсатных насосов. 45

2.5.4 Выбор циркуляционных насосов охлаждающей воды. 47

2.6. Выбор регенеративных подогревателей. 48

2.6.1. Выбор подогревателей высокого давления. 49

2.6.2. Выбор ПНД поверхностного типа. 50

2.6.3. Выбор ПНД смешивающего типа. 52

2.7. Выбор деаэратора. 53

Глава 3. Расчёт ПНД. 54

3.1. Описание схемы включения, конструкции и принципа действия. 54

3.2. Тепловой расчет подогревателя. 56

3.3. Определение основных геометрических характеристик. 61

3.4. Гидравлический расчет. 62

3.5. Расчет на прочность. 65

Глава 4. Задание. 70

4.1. Описание задания. 70

4.2. Выполнение задания. 70

4.3. Расчет основной тепловой схемы. 78

4.4. Общий вывод по работе. 82

БИБЛИОГРАФИЧЕСКИЙ СПИСОК 84


ВВЕДЕНИЕ

Жизнь современного человека на Земле немыслима без использования электроэнергии.

Основу современной энергетики составляют технологии трансформации энергии различных природных ее источников. В настоящее время в мире наиболее широко представлена теплоэнергетика, базирующаяся на источниках органического происхождения (нефтяное топливо, уголь и газ). В последние десятилетия активно развивалась и атомная энергетика с использованием реакторов на тепловых нейтронах типов ВВЭР и РБМК (первичный источник энергии – ядерное топливо).

На долю тепловых электрических станций приходится около 80%, производимой электроэнергии в России, около 13% на гидроэлектростанции и около 7% на атомные электростанции.

Все шире находит применение парогазовая технология, на основе которой формируются парогазовые установки (ПГУ). Представляющие собой надстройку паротурбинного цикла, где в надстроечной части применяется газовая турбина, отработавшие газы которой из-за наличия в них достаточного количества неиспользованного в камере сгорания ГТУ кислорода подаются в топку котла-утилизатора, для генерации водяного пара, работающего в паровой турбине.

Еще в 1980-х годах в электроэнергетике страны стали проявляться признаки стагнации: производственные мощности обновлялись заметно медленнее, чем росло потребление электроэнергии.

В 1990-е годы, в период общеэкономического кризиса в России, объем потребления электроэнергии существенно уменьшился, в то же время процесс обновления мощностей практически остановился.

Выделяют несколько факторов кризисного состояния энергетики:

– спад производства во всех отраслях ТЭК;

– низкий технический уровень основного оборудования ТЭК, быстро растущая его изношенность и, как следствие, высокая стоимость производимых ТЭР;

– экологическое неблагополучие вокруг объектов ТЭК;

– спад инвестиций в отрасли ТЭК;

– нарушения энергоснабжения из-за неплатежей, а в ряде регионов из-за недостаточной мощности источников энергии;

– расточительное энергопотребление: высокая энергоемкость ВВП, скромные успехи в работе по энергосбережению.

Сегодня почти каждая вторая тонна сжигаемого топлива расходуется непроизводительно. Удельная энергоемкость ВВП в РФ почти в 3 раза выше, чем в странах Западной Европы и в 1,8 раза выше, чем в США.

Все это вызвало необходимость преобразований в электроэнергетике, которые создали бы стимулы для повышения эффективности энергокомпаний и позволили существенно увеличить объем инвестиций в отрасли. В противном случае, при дальнейшем расширении внешнеэкономического сотрудничества, российские предприятия проиграли бы экономическое соревнование не только на зарубежных рынках, но и на внутреннем рынке страны.

Основная цель расчета принципиальной тепловой схемы проектируемого конденсационного энергоблока заключается в определении технических характеристик теплового оборудования (расходов пара, воды и топлива) и энергетических показателей энергоблока и его частей (КПД и удельных расходов теплоты и топлива). ПТС при про­ектировании рассчитывается при максимальной (номинальной) мощности энергоблока NЭ. Эта величина является исходной в данном расчете и определяет вы­бор оборудования энергоблока электростанции.


Глава 1. Расчёт принципиальной схемы ТЭС.

1.1. Составление принципиальной тепловой схемы.

Таблица 1.1.

Исходные данные для расчета тепловой схемы

Параметры Обозначения Размерность Величина
1 Мощность турбоустановки
МВт 250
2 Начальные параметры
МПа/°C 24.5/550
3 Параметры промперегрева
МПа/°C 4.5/550
4 Конечное давление
МПа 0.004
5 Температура питательной воды
°C 278
6 Давление пара в деаэраторе
МПа 0.7
7 Схема включения деаэратора Предвключенный в 3-ий отбор
8 Тип привода питательного насоса Турбопривод
9 Схема включения приводной турбины Предвключенная во 3-ой отбор, с конденсацией
10 Давление в конденсаторе приводной турбины
МПа 0.0065
11 Внутренние относительные КПД турбины по отсекам
- 0.86
0.9
0.83
12 Внутренний относительные КПД турбопривода
- 0.84
13 Величина утечек пара и конденсата
- 0.015
14 Вид топлива Твердое (Ангренский бурый уголь)
15 Число регенеративных подогревателей, в том числе: - ПВД - ПНД (без учета деаэратора) - шт 8 3 5
16 Схема ПНД Поверхностные - 3 Смешивающие - 2
17 Схема слива дренажа ПНД С точкой смешения
18 Недогревы в ПВД
2
19 Недогревы в ПНД
4,5
20 Метод подготовки добавочной воды Химический

Энергоблок мощностью 250 МВт состоит из прямоточного котла и трёхцилиндровой конденсационной турбины выполненной на сверхкритические параметры пара с промежуточным перегревом, тремя выхлопами в конденсатор и развитой системой регенеративного подогрева питательной воды. Свежий пар с параметрами 24.5 МПа, 550 °C через группу стопорных и регулирующих клапанов поступает в ЦВД. Пар расширяется в группе ступеней ЦВД, затем направляется на промежуточный перегрев 4.5 МПа, 550°C. После промежуточного перегрева пар поступает к стопорным клапанам ЦСД, а затем направляется к ступеням ЦСД. После ЦСД пар по перепускным (ресиверным) трубам попадает в 2-х поточный ЦНД.