Как видно из таблицы, при добавлении аценафтена в раствор бензофенона в н.-октане, время затухания фосфоресценции последнего уменьшается от 6.1 мс до 3.9 мс. Отжиг этого образца приводит к увеличению интенсивности фосфоресценции бензофенона в 2 раза (рис. 22), при этом время затухания увеличивается в 1.3 раза. Одновременное увеличение интенсивности и времени затухания фосфоресценции бензофенона может быть обусловлено только снятием тушения его триплетных состояний. Однако, это не может быть связано с уменьшением тушения триплетных молекул донора в результате переноса энергии на одиночные молекулы акцептора, участвующие в излучении сенсибилизированной фосфоресценции, поскольку её интенсивность при этом также возрастает. На основании этого можно утверждать о наличии других каналов тушения триплетных молекул донора в присутствие молекул акцептора, кроме переноса энергии на одиночные молекулы акцептора, участвующие в излучении сенсибилизированной фосфоресценции. Эти каналы дезактивации энергии триплетного возбуждения молекул донора назовём дополнительными каналами тушения. С их учётом время затухания фосфоресценции донора можно представить в следующем виде:
Здесь
kT1 - константа перехода молекул донора из триплетного состояния в основное в результате передачи энергии молекулам акцептора, участвующих в излучении сенсибилизированной фосфоресценции;
kT2 - константа перехода молекул донора из триплетного состояния в основное в результате дополнительного тушения.
Отжиг раствора снимает дополнительное тушение. Однако, как отмечалось выше, увеличение интенсивности опережает изменение  . Если бы изменение интенсивности было обусловлено только одним процессом, в результате которого также изменяется  
, то отношение интенсивностей до и после отжига не превышало бы отношение времен затухания [19]
Поэтому можно предположить, что существует два типа дополнительного тушения. В результате одного из них происходит уменьшение  , а в результате второго происходит полное тушение триплетных состояний определённой части молекул донора. Молекулы донора, испытывающие тушение второго типа, не участвуют в излучении, и поэтому это тушение не влияет на  
.
В результате отжига снимается оба типа тушения. Снятие дополнительного тушения типа I приводит к увеличению  , а следовательно и интенсивности за счёт изменения относительной заселённости триплетного уровня, а снятие дополнительного тушения типа II – только к увеличению интенсивности за счёт увеличения общего числа молекул донора, участвующих в излучении.
Увеличение интенсивности фосфоресценции донора в результате отжига позволяет отбросить из рассмотрения следующий возможный механизм увеличения числа молекул акцептора энергии, участвующих в излучении сенсибилизированной фосфоресценции. В процессе отжига образца система из термодинамически неустойчивого состояния переходит в более устойчивое, которое соответствует более равномерному распределению молекул примеси. В результате чего часть молекул акцептора, которые ранее не участвовали в переносе энергии, попадают в сферу обменных взаимодействий с молекулами донора и теперь участвуют в излучении. Очевидно, что при этом должно усиливаться тушение триплетных молекул донора энергии, в результате чего интенсивность и время затухания их фосфоресценции должны уменьшиться. Что противоречит экспериментальным результатам, приведенным выше.
4.4 ИССЛЕДОВАНИЕ ЗАКОНА НАКОПЛЕНИЯ ЧИСЛА МОЛЕКУЛ АКЦЕПТОРА, УЧАСТВУЮЩИХ В ИЗЛУЧЕНИИ, В ПРОЦЕССЕ ОТЖИГА
В 4.2 было показано, что увеличение интенсивности сенсибилизированной фосфоресценции в результате отжига образца происходит за счёт увеличения числа молекул акцептора, участвующих в излучении. Поэтому для выяснения физической природы процесса, приводящего к увеличению общего числа молекул акцептора, участвующих в излучении, необходимо было изучить закон их накопления в процессе отжига.
Обозначим интенсивность сенсибилизированной фосфоресценции после быстрого замораживания образца до 77 К через I(0). После отжига образца в течение определённого времени t при температуре Т и последующем охлаждении до 77 К интенсивность сенсибилизированной фосфоресценции обозначим через I(t). Тогда DI(t) = I(t) – I(0) – означает прирост интенсивности сенсибилизированной фосфоресценции в процессе отжига образца в течение этого времени.
По характеру кривых зависимостей относительной интенсивности сенсибилизированной фосфоресценции от времени отжига (рис. 17, 18) можно предположить, что при фиксированной температуре Т прирост интенсивности DI(t) в зависимости от времени отжига происходит по закону, определяемому экспонентой:
DI(t) = DI(¥){1-exp(-t/t)}, (45)
с характерным временем t, которое зависит от температуры отжига. DI(¥) - прирост интенсивности при длительном отжиге образца - t » t.
|    |  
|    |  
|    |  
Как видно из таблицы, для всех исследованных систем повышение температуры отжига раствора приводит к уменьшению характерного времени процесса нарастания.
Таким образом, на основании этих экспериментальных данных можно утверждать, что прирост стационарной интенсивности сенсибилизированной фосфоресценции в процессе отжига хорошо описывается экспонентой (39) с характерным временем t, которое уменьшается при повышении температуры отжига.
Поскольку, как отмечалось выше, в отсутствие реабсорбции излучения интенсивность сенсибилизированной фосфоресценции I(t) пропорциональна концентрации триплетных молекул акцептора энергии nT(t), то для последних также можно записать:
DnT(t) = DnT(¥){1 - exp(-t/t)}, (46)
где DnT(t)- изменение концентрации триплетных молекул нафталина за время отжига t.
Таблица 15.
Характерное время t процесса нарастания числа одиночных молекул акцептора, участвующих в переносе энергии в процессе отжига.
|   Соединение  |   Растворитель |   Концентрация |    Температура отжига, К  |    t, мин.  |  
|   Бензофенон + аценафтен  |    н.-октан  |    СБ = 5×10-3 М СА = 5×10-3 М  |    161  |    3.06  |  
|   167  |    0.99  |  |||
|   173  |    0.38  |  |||
|   н.-декан  |    СБ = 10-3 М СА = 5×10-3 М  |    157  |    9.81  |  |
|   167  |    1.93  |  |||
|   177  |    0.47  |  |||
|   Бензофенон + нафталин  |    н.-гексан  |    СБ = 10-2 М СН = 3.5×10-3 М  |    161  |    4.65  |  
|   168  |    1.87  |  |||
|   н.-октан  |    СБ = 5×10-3 М СН = 5×10-3 М  |    161  |    7.41  |  |
|   166  |    3.54  |  |||
|   н.-декан  |    СБ = 5×10-3 М СН = 5×10-3 М  |    166  |    1.12  |  |
|   172  |    0.56  |  
В 4.2 было показано, что изменение концентрации триплетных молекул акцептора в процессе отжига сопровождается практически неизменной относительной заселённостью триплетного уровня -  . Основываясь на выражении (42) было сделано заключение, что изменение DnT(t) происходит за счёт снятия концентрационного тушения. Поэтому аналогичный (46) закон характеризует и рост числа мономерных молекул акцептора, участвующих в переносе энергии.