Таким образом, для прироста в процессе отжига общего числа молекул акцептора, участвующих в переносе энергии можно записать:
Dn(t) = Dn(¥){1-exp(-t/t)}. (47)
Величина, обратная t, характеризует скорость прироста при данной температуре концентрации триплетных молекул акцептора энергии, q = 1/t , и называется константой скорости процесса [161].
Итак, прирост в результате отжига образца числа молекул, участвующих в излучении сенсибилизированной фосфоресценции происходит по экспоненциальному закону. Константа скорости этого процесса зависит от температуры. В дальнейшем необходимо было определить характер зависимости константы скорости указанного выше процесса от температуры.
4.5 ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АКТИВАЦИИ ПРОЦЕССА, ПРИВОДЯЩЕГО К УВЕЛИЧЕНИЮ ЧИСЛА МОЛЕКУЛ АКЦЕПТОРА, УЧАСТВУЮЩИХ В ИЗЛУЧЕНИИ
Возможными причинами увеличения после отжига концентрации молекул акцептора, участвующих в излучении, являются либо диффузионные процессы, приводящие к перераспределению имеющихся в растворе до отжига мономерных молекул, либо повышение числа мономерных молекул в растворе в результате распада более сложных образований. Хотя не исключены и другие процессы.
Выше было показано, что в твёрдом теле подобные физические и химические процессы обычно характеризуются Аррениусовской зависимостью константы скорости процесса от температуры:
q(Т) = q(¥) ехр (-Еак/RT) (48)
где q(¥) - предэкспоненциальный множитель, Еак- энергия активации процесса.
Соответственно для t :
t(Т) = (1/ q(¥)) ехр (Еак/RT). (49)
Представляло интерес экспериментально проверить эту зависимость.
Прологарифмируем уравнение Аррениуса (48):
lnt = Еак/RT- ln [q(¥)]. (50)
Написав это уравнение для различных температур Т1 и Т2 и вычтя второе уравнение из первого, получим:
ln(t1/t2)= Еак/R (1/T1- 1/Т2). (51)
Если это уравнение справедливо, то на графике в координатах ln(t1/t) от (1/T1- 1/Т) экспериментальные точки должны располагаться на прямой с тангенсом угла наклона, равным Еак/R.
На рис. 28 представлена данная зависимость для пар бензофенон-аценафтен в н.-октане (а), в н.-декане (б) и бензофенон-нафталин в н.-декане (в). Как видно из рисунка, экспериментальные точки хорошо укладываются на экспоненту (сплошная линия). Это говорит об экспоненциальной зависимости характеристического времени процесса t от температуры. Следовательно, и константа скорости q физического процесса, происходящего при отжиге экспоненциально растёт с повышением температуры.
Таким образом, на основании этих экспериментальных данных можно утверждать, что физический процесс, приводящий к увеличению числа участвующих в переносе энергии мономерных молекул акцептора при отжиге описывается Аррениусовской зависимостью константы скорости процесса от температуры.
Величина тангенса угла наклона прямых q позволяет определить энергию активации процесса: Еак= R tgq.
В табл. 16 представлены результаты определения энергии активации процесса для пар бензофенон-аценафтен и бензофенон-нафталин в различных растворителях. По порядку величины энергия активации процесса для исследованных ароматических углеводородов находится в пределах от 29 до 45 кДж/моль (от 0.30 до 0.47 эВ). Ошибка измерения этой величины составляла » 30 %.
Таблица 16.
Энергия активации процесса увеличения общего числа молекул акцептора, участвующих в переносе энергии
Соединение | Растворитель | Энергия активации, кДж/моль |
Бензофенон+аценафтен | н.-октан | 40 |
н.-декан | 36 | |
Бензофенон + нафталин | н.-гексан | 29 |
н.-октан | 33 | |
н.-декан | 45 |
Таким образом, константа скорости процесса, приводящего в результате отжига к увеличению числа молекул акцептора, участвующих в излучении сенсибилизированной фосфоресценции, экспоненциально зависит от температуры. Энергия активации этого процесса для ароматических углеводородов представляет величину 30-45 кДж/моль.
4.6.ОСНОВНЫЕ РЕЗУЛЬТАТЫ ГЛАВЫ 4
Немонотонный характер температурной зависимости сенсибилизированной фосфоресценции обусловлен отжигом образца в процессе его нагревания.
Отжиг раствора при фиксированной температуре из аномальной области 2 приводит к увеличению интенсивности фосфоресценции как молекул донора, так и молекул акцептора. Причем, интенсивность фосфоресценции молекул акцептора всегда увеличивается в большее число раз, чем молекул донора.
Отжиг и уменьшение концентрации раствора донорно-акцепторной смеси одинаковым образом влияет на параметры сенсибилизированной фосфоресценции (спектры, кинетику и интенсивность). Это подтверждает, что увеличение интенсивности сенсибилизированной фосфоресценции происходит в результате снятия концентрационного тушения за счёт отжига образца.
Рост интенсивности сенсибилизированной фосфоресценции обусловлен увеличением общего числа молекул акцептора энергии, участвующих в излучении, тогда как относительная заселённость их триплетного уровня практически не изменяется. Рост же интенсивности фосфоресценции молекул донора в присутствии молекул акцептора в результате отжига образца обусловлен как увеличением числа молекул донора, участвующих в излучении, так и увеличением относительной заселённости их триплетного уровня.
Увеличение в процессе отжига образца при фиксированной температуре числа молекул акцептора участвующих в излучении сенсибилизированной фосфоресценции происходит по экспоненциальному закону с характерным временем роста t , которое зависит от температуры отжига.
Константа скорости роста в процессе отжига образца числа молекул акцептора, участвующих в излучении сенсибилизированной фосфоресценции, описывается Аррениусовской зависимостью от температуры:
q(Т) = q(¥) ехр (-Еак/RT)
Энергия активации процесса, приводящего к увеличению числа триплетных молекул акцептора, участвующих в излучении сенсибилизированной фосфоресценции для ароматических углеводородов составляет величину 30-45 кДж/моль.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
Исследованы механизмы концентрационного тушения возбужденных состояний органических молекул в твердых н.-парафиновых растворах в условиях триплет-триплетного переноса энергии. Выполненные в настоящей работе экспериментальные исследования влияния температуры на параметры фосфоресценции молекул донорно-акцепторной смеси позволили получить следующие научные результаты, раскрывающие физическую природу этого влияния и устанавливающие его связь с механизмами концентрационного тушения люминесценции.
1. Проведено теоретическое и экспериментальное исследование кинетики накопления и распада триплетных молекул акцептора энергии при их сенсибилизированном возбуждении. На основании полученных результатов разработана методика определения относительной заселенности триплетного уровня молекул акцептора, а так же константы перехода молекул акцептора из основного состояния в триплетное в результате переноса энергии из кинетических экспериментов.
2. Установлено, что температурная зависимость интенсивности сенсибилизированной фосфоресценции органических молекул в н.-парафиновых растворах в области от 77 К до точки плавления растворителя имеет немонотонный характер. Наблюдаются интервалы как уменьшения, так и увеличения интенсивности излучения при повышении температуры. Увеличение интенсивности сенсибилизированной фосфоресценции с ростом температуры характерно только для тех концентраций примесей, для которых имеет место концентрационное тушение возбужденных состояний акцептора. Показано, что причиной этого увеличения является снятие концентрационного тушения триплетных состояний в процессе нагревания раствора.