Смекни!
smekni.com

Водень в шаруватих кристалах GaSe (стр. 2 из 2)

Рис.2.Температурна залежність напівширини «широкої» спектральної компоненти.


Як видно з рис. 1, у спектрі ПМР інтеркалатів можна виділити «вузьку» й «широку» компоненти, причому необхідно відзначити, що подібні спектри спостерігаються лише в температурному інтервалі 130-370 К, нижче якого зникає «вузька», а вище - «широка» компоненти. Форма «вузької» компоненти, а також її температурний і концентраційний генезис докладно досліджені, тому відзначимо тут лише те, що її поява обумовлена станом впровадженої домішки у вандерваальсовських проміжках структури кристалів. Форма «широкої» компоненти лінії свідчить про те, що за її виникнення відповідально «зв'язане» стан домішки. Другий момент спостережуваної в HxGaSe лінії становить 27 Гс2 (при кімнатній температурі). Такі значення другого моменту характерні для гідридів перехідних металів, у яких впроваджений водень перебуває в тетраедричних або октаедричних міжвузлях базисної гратки. Подібно гідридам металів при температурі 230 К До на кривій (рис. 2) спостерігається вигин, а при 370 К різке звуження лінії до ширини її «вузької» компоненти. Отже, при електрохімічному інтеркалюванні селеніду галію воднем відбувається не тільки міжвузлове впровадження домішки, але й гідрування шарових вузлів GaSe. Подібно гідридам металів при температурі 230 К відбувається плавне звуження лінії за рахунок включення актиреориєнтації атомів інтеркалянта в шаровому пакеті GaSe (енергія активації Еа=11 ккал/моль). При температурі 370 К відбувається вихід атомів інтеркалянта із шарових вузлів (різке звуження лінії) в об'єм щілини і його інтенсивна деінтеркаляція із кристала). Причому, як показало багаторазове циклювання поблизу температури переходу, процес виходу водню із шарового вузла в міжвузловий простір оборотний (без обліку деінтеркаляції) - при зниженні температури до Т = Tкр знову спостерігається «широка» компонента.

Слід зазначити, що механізм звуження лінії в інтеркалатах відрізняється від останнього в гідридах металів, у яких звуження зв'язане лише з реориєнтацією домішки й трансляційною дифузією по міжвузлях. Термостимульоване деінтеркалювання водню з HxGaSe можна схематично представити

Необхідно відзначити, що оборотність переходу між двома першими станами представляється несподіваною. Розроблена теорія інтеркалювання, виключає подібне поводження домішки, що багаторазово підтверджувалося експериментально. Подібний результат можна пояснити лише в припущенні, що вільна енергія інтеркалата в щілині й у фазі гідриду відрізняється незначно. Останнє представляється можливим, з огляду на малі розміри інтеркалянта й термодинамічні характеристики процесів гідрування в металах.

Визначення «зв'язаний стан» неоднозначно, оскільки включає дві можливості заміщення воднем атомів у вузлах базисної гратки і його міжвузлового розміщення. З метою визначення типу розміщення домішки в структурі шаруючи проведені рентгеноструктурні дослідження інтеркалатів HxGaSe. На рентгенограмах зразків зі значним змістом водню (х ≥ 2) були зареєстровані ефекти додаткового розсіювання у вигляді розмитих максимумів, що свідчить про локальне перекручування структури. Крім цього, особливістю дифракційної картини є наявність додаткових ліній. Фазовий аналіз дозволив віднести ці відбиття за рахунок дифракції на гратці гексагонального селена, що перебуває в зразку у вільному стані, причому нерівномірна інтенсивність уздовж ряду ліній свідчить про текстурування виділенням Se. Отриманий результат може спровокувати припущення про те, що «широка» компонента обумовлена винятково станом водню, що заміщає селен у вузлах гратки Крім цього, по оцінці інтенсивності, вміст вільного селена становить менш 10 ат. %, що не може пояснити порівняно великої інтенсивності «широкої» компоненти. Таким чином, основний внесок в «широку» компоненту дає міжвузловий водень подібно гідридам металів.

Література

1. Remanent Zero Field Spin Splitting of Self-Assembled Quantum Dots in a Paramagnetic Host C. Gould, A. Slobodskyy, D. Supp, T. Slobodskyy, P. Grabs, P. Hawrylak, F. Qu,G. Schmidt, and L. W. Molenkamp Phys. Rev. Lett. 97, 017202 (2006).

2. Circular-to-Linear and Linear-to-Circular Conversion of Optical Polarization by Semiconductor Quantum Dots G. V. Astakhov, T. Kiessling, A. V. Platonov, T. Slobodskyy, S. Mahapatra,W. Ossau, G. Schmidt, K. Brunner, and L.W. Molenkamp Phys. Rev. Lett. 96, 027402 (2001).

3. Electric field control of magnetization dynamics in ZnMnSe/ZnBeSe diluted-magneticsemiconductor heterostructures M. K. Kneip, D. R. Yakovlev, and M. Bayer, T. Slobodskyy, G. Schmidt, and L. W. Molenkamp Appl. Phys. Lett. 88, 212105 (2006).

4. Anomalous in-plane magneto-optical anisotropy of self-assembled quantum dots T. Kiessling, A.V. Platonov, G. V. Astakhov, T. Slobodskyy, S. Mahapatra, W. Ossau, G. Schmidt, K. Brunner, and L. W. Molenkamp Phys. Rev. B 74, 041301(R) (2002).

5. Coherent dynamics of locally interacting spins in self-assembled Cd1–xMnxSe/ZnSe quantum dots M. Scheibner, T. A. Kennedy, L. Worschech, A. Forchel, G. Bacher, T. Slobodskyy, G. Schmidt, and L. W. Molenkamp Phys. Rev. B 73, 081308(R) (2003).

6. Enhanced Zn–Cd interdiffusion and biexciton formation in self-assembled CdZnSe quantum dots in thermally annealed small mesas E. Margapoti, L. Worschech, A. Forchel, T. Slobodskyy, and L. W. Molenkamp J. Appl. Phys. 100, 113111 (2001).

7. Optical anisotropy of CdSe/ZnSe quantum dots T. Kiessling, G.V. Astakhov, A.V. Platonov, T. Slobodskyy, S. Mahapatra, W. Ossau, G. Schmidt, K. Brunner, L.W. Molenkamp Phys. stat. sol. (c) 3, No. 4, 912 (2006).