Смекни!
smekni.com

Волоконно-оптичні сенсори контролю шкідливих хімічних компонентів (стр. 5 из 5)

3.4.Волоконно-оптичний датчик іонізуючого випромінювання

Принцип дії датчика полягає в реєстрації світлового сигналу, що індукується в сцинтиляційному матеріалі іонізуючим випромінюванням і передається до фотоприймача по волоконному світловоду. Цим опто-волоконний датчик відрізняється від існуючих приладів, у яких сцинтилятор сполучений з фотоприймачем [10]. Переваги оптоволоконного датчика складаються в можливості розміщення прийомної апаратури поза зоною дії радіації й електромагнітних наведень. Мініатюрні розміри датчика роблять його дуже зручним для проведення вимірів з високою просторовою роздільною здатністю, причому у важкодоступних місцях, а також дозволяють створювати многоканальні системи.

За допомогою цього датчика можна досліджувати залежність корисного сигналу від гама поля і визначити величину сигналу стосовно радіолюмінісценції оптичного волокна (фону).

Конструкція датчика і розміри корпуса сцинтилятора (не більш 5 мм у діаметрі і 20 мм у довжину), визначилися з урахуванням передбачуваних вимірів [11] у спеціальних каналах реакторів типу ВВЄР і РБМК, а також у центральних гільзах тепловиділяючих зборок РБМК, призначених для розміщення датчиків енерговиділення.

Основним елементом датчика є радіаційно-стійке оптичне волокно із серцевиною з чистого кварцового скла, насиченого молекулярним воднем [12]. Захисне алюмінієве покриття волокна допускає нагрівання до 400 0С, не активується і не руйнується нейтронами. Випробовування на ядерному реакторі [13] показали, що такі волокна залишаються досить прозорими (наведене радіацією поглинання світла у видимому діапазоні не більш 0.5 дБ/м) при опроміненні до флюенса швидких (Е>0.1 Мев) нейтронів ~1018 н/см2 і гама дози ~ 20 МГр. Ще одна перевага цих волокон проявилася в багаторазово меншій радіолюмінісценції в порівнянні з іншими аналогічними зразками.

Для дослідів були взяті сцинтилятори з добре вивченими властивостями, а саме NaІ(Tl), CsІ(Tl), ZnS(Ag), p-терфенил у полістиролі і стильбен C14H12 [11]. Також була виміряна радіолюмінісценція (фон) відрізка, однорідно опромінюваного волокна довжиною 3,5 м, рівній "половині палива" РБМК.

Усі сцинтилятори виявили лінійну залежність корисного сигналу від потужності гама дози в діапазоні 0,03-200 Р/с (потужність поглиненої дози до ~ 2 Гр/с (Sі)). Оптична фільтрація сигналів (виділення за допомогою світлофільтрів спектрального інтервалу в районі максимуму світіння сцинтиляторів) дозволила підняти відношення сигналу до фону до ~ 100 для сцинтиляторів NaІ(Tl) і CsІ(Tl).

3.5. Датчик концентрації газу

На рис. 3.14 представлена структурна схема газового датчика [1]. Світло, випромінюване лазером або світлодіодом, поступає в середовище з вимірюваним газом через багатомодове оптичне волокно. З пройдених через газ світлових хвиль поглинатимуться тільки ті, які входять в спектр поглинання цього газу. Таким чином, подаючи (також за допомогою багатомодового оптичного волокна) пройдене через середовище з газом світло на світловий детектор, можна визначати вид газу і вимірювати його концентрацію. На мал. 3.15 показані робочі спектральні області світловипромінюючих приладів на основі AlGaAs, InGaAsP і світлоприймальних приладів на основі Si, Ge, а також спектр молекулярного поглинання для основних видів газів.

Подібні газові датчики можна використовувати для дистанційного нагляду за ступенем забруднення атмосфери (газами N2O2 , NH3, СН4 і ін.) і за концентрацією горючих газів (СН4, С3Н8 і ін.). Наприклад, реалізована система нагляду за концентрацією газу СН4 на відстані більше 20 км.


ВИСНОВКИ

В даній курсовій роботі проведено огляд основних питань, які стосуються волоконно-оптичних датчиків, а саме:

1) актуальність використання волоконно-оптичних датчиків;

2) їх основні характеристики і види оптичних волокон, які використовуються в сенсорних технологіях;

Розглянуто основні види інтерференційних волоконно-оптичних датчиків: торцевий волоконно-оптичний інтерферометр Фабрі-Перо, інтерферометр Маха-Цендера і багатомодовий інтеферометр.

Основну увагу звернуто на хімічні волоконно-оптичні датчики. Як приклад, описаний волоконно-оптичний сенсор для контролю аміаку в повітрі. А також дано інформацію про інші сенсори шкідливих хімічних елементів, наприклад, про волоконно-оптичний датчик іонізуючого випромінювання.


СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1.Окоси Т и др. Волоконно-оптические датчики. Пер. с япон.- Л.:Энергоатомиздат, 1990. - 256 с.

2.Бусурин Б.И., Носов Ю.Р. Волоконно-оптические датчики. М.: Энергоатомиздат, 1990.

3. Мировицкий Д.И. Мультиплексированные системы воло­конно-оптических датчиков // Измер. техника. 1992. № 1. С. 40-42.

4. Udd E. Applications of Fiber Optic Smart Structures // Opt. and Photon. News. 1996. Vol. 7, № 5. Р. 17-22.

5. Senior J.M., Moss S.E., Cusworth S.D. Multiplexing Techniques for Noninterferometric Optical Point-Sensor Networks // Fiber and Integr. Opt. 1998. Vol. 17, № 1. P. 3-20.

6.Зубков И.Л., Соборовер Э.И., Добротин С.А. Оптические химические сенсоры для контроля газовых сред // Материалы IV ВНТК "Методы и средства измерений", часть 1, январь 2002 г. - Н. Новгород: МВВО АТН РФ, 2002. С. 19.

7.Соборовер Э.И., Зубков И.Л. Оптический химический сенсор с тонкопленочным планарным волноводом для контроля газовых сред // Там же. С. 18.

8.Соборовер Э.И., Гундорин В.В. Исследование сенсорного эффекта в плосковолноводном оптическом химическом газовом сенсоре трехслойной конструкции // Датчики и системы. 2001. № 6. С. 23-28.

9. Seitz W.R. Fiber Optics Sensors.//Anal.Chem,1984. Vol. 86,№1. P.16A.

10.Акимов Ю.К. // Физика элементарных частиц и атомного ядра. 1994. т. 25. выпуск 1. с. 229-284.

11. Шевченко В.Г., Гарусов Ю.В., Роботько А.В., Комаров М.В. // Атомные электрические станции: Сб. ст. Вып.9 – М.: Энергоатомиздат, 1987. – с.87

12. Tomashuk A.L., Golant K.M., Dianov E.M. et al. // IEEE Transactions on Nuclear Science, 2000, V. 47, No. 3, Part 1, pp. 693-698.

13. А.В.Бондаренко, Кащук Ю.А., Красильников А.В., и др. // Теоретические и экспериментальные исследования, выполненные в 2003 году. Сб. трудов. Вып.3-Троицк, ОНТИ ГНЦ РФ ТРИНИТИ, 2004, с. 175-178.