Смекни!
smekni.com

Волоконно-оптичні сенсори контролю шкідливих хімічних компонентів (стр. 1 из 5)

Реферат на тему:

ВОЛОКОННО-ОПТИЧНІ СЕНСОРИ КОНТРОЛЮ ШКІДЛИВИХ ХІМІЧНИХ КОМПОНЕНТІВ

УЖГОРОД -2007


ВСТУП

РОЗДІЛ 1. ОСОБЛИВОСТІ ВОЛОКОННО-ОПТИЧНИХ ДАТЧИКІВ

1.1. Історія розвитку волоконно-оптичних датчиків і актуальність їх використання

1.2. Характеристики оптичного волокна як структурного елемента

Датчика

1.3.Одно- і багатомодові оптичні волокна

1.4.Класифікація волоконно-оптичних датчиків і приклади їхнього застосування

1.5.Волоконні світловоди і вимірювальні пристрої на їхній основі

1.6.Мікрорезонаторні волоконно-оптичні датчики

РОЗДІЛ 2.ІНТЕРФЕРЕНЦІЙНІ ВОЛОКОННО-ОПТИЧНІ ДАТЧИКИ

2.1.Торцевий волоконно-оптичний інтерферометр Фабрі-Перо

2.2. Інтерферометр Маха-Цендера і багатомодовий інтеферометр

РОЗДІЛ 3. ХІМІЧНІ СЕНСОРИ

3.1. Загальні відомості про хімічні сенсори

3.2.Принципи роботи і пристрій хімічних сенсорів

3.3.Волоконно-оптичний сенсор для контролю аміаку в повітрі

3.4.Волоконно-оптичний датчик іонізуючого випромінювання

3.5. Датчик концентрації газу

ВИСНОВКИ

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ


ВСТУП

Метою даної курсової роботи є огляд основної літератури на тему “Волоконно-оптичні сенсори контролю шкідливих хімічних компонентів”.

Сенсорізация виробничої діяльності, тобто заміна органів чуття людини на датчики, повинна розглядатися як третя промислова революція вслід за першими двома - машинно-енергетичної і інформаційно-комп'ютерної. Потреба в датчиках стрімко росте у зв'язку з швидким розвитком автоматизованих систем контролю і управління, упровадженням нових технологічних процесів, переходом до гнучких автоматизованих виробництв. Крім високих метрологічних характеристик датчики повинні володіти високою надійністю, довговічністю, стабільністю, малими габаритами, масою і енергоспоживанням, сумісністю з мікроелектронними пристроями обробки інформації при низькій трудомісткості виготовлення і невеликій вартості. Цим вимогам в максимальному ступені задовольняють волоконно-оптичні датчики.


РОЗДІЛ 1. ОСОБЛИВОСТІ ВОЛОКОННО-ОПТИЧНИХ ДАТЧИКІВ

1.1. Історія розвитку волоконно-оптичних датчиків

і актуальність їх використання

Оптоелектроніка - це досить нова область науки і техніки, що з'явилася на стику оптики й електроніки. Варто помітити, що в розвитку радіотехніки із самого початку ХХ століття постійно простежувалася тенденція освоєння електромагнітних хвиль усе більш високої частоти. Важливим моментом у розвитку оптоелектроніки є створення оптичних волокон. Особливо інтенсивними дослідження стали наприкінці 1960-x років, а розробка в 1970 р. американською фірмою "Корнінг" кварцового волокна з малим загасанням (20 дБ/км) з'явилася епохальною подією і послужила стимулом для збільшення темпів досліджень і розробок на всі 1970-і роки.

Публікації про більш-менш прийнятні розробки й експериментальні зразки подібних датчиків з'явилися в другій половині 1970-х років. Однак вважається, що цей тип датчиків сформувався як один з напрямків техніки тільки на початку 1980-х років. Тоді ж з'явився і термін "волоконно-оптичні датчики" (optіcal fіber sensors). Таким чином, волоконно-оптичні датчики - дуже молода область техніки.

Розробці волоконно-оптических датчиків сприяли і сприяють насамперед досягнення у виготовленні скляних волокон і їхніх системних компонентів (розвітвлень, джерел світла, детекторів і т.п. ). Світловий пучок, що попадає у волоконно-оптический детектор, від джерела світла під дією вимірюваного параметра (наприклад, тиску, температури, рівня, зміни концентрації речовини і т.п. ) терпить в детекторі зміну по інтенсивності, поляризації, фазі або кольору і тим самим забезпечує одержання інформації. Поширення світлових хвиль всередині датчика здійснюється по скляних волокнах. Актуальність викристання волоконно-оптичних датчиків полягає в тому, що ці датчики нових типів знаходять застосування насамперед в умовах, характеризуємих наявністю агресивних випаровувань або вибухонебезпечних газових сумішей, у зонах підвищеної радіоактивності і сильних електромагнітних полів.

1.2. Характеристики оптичного волокна як структурного елемента датчика

Перш ніж оцінювати значимість цих характеристик в даній області застосування, відзначимо загальні переваги оптичних волокон [1]:

- широкосмужність (передбачається до декількох десятків терагерц);

- малі втрати (мінімальні 0,154 дБ/км);

- малий (близько 125 мкм) діаметр;

- мала (приблизно 30 г/км) маса;

- еластичність (мінімальний радіус вигину 2 мм);

- механічна міцність (витримує навантаження на розрив приблизно 7кг);

- відсутність взаємної інтерференції;

- безіндукційність (практично відсутній вплив електромагнітної індукції, а отже, і негативні явища, зв'язані з грозовими розрядами, близькістю

до лінії електропередачі, імпульсами струму в силовій мережі);

- взривобезопасність (гарантується абсолютною нездатністю волокна бути причиною іскри);

- висока електроізоляційна міцність (наприклад, волокно довжиною 20 см витримує напруга до 10000 B);

- висока корозійна стійкість, особливо до хімічних розчинників, олії, води.

У практиці використання волоконно-оптических датчиків мають найбільше значення останні чотири властивості. Досить корисні і такі властивості, як еластичність, малі діаметр і маса. Широкосмужність же і малі втрати значно підвищують можливості оптичних волокон, але далеко не завжди ці переваги усвідомлюються розроблювачами датчиків. Однак, із сучасної точки зору, у міру розширення функціональних можливостей волоконно-оптичних датчиків у найближчому майбутньому ця ситуація потроху виправиться.

Як буде показано нижче, у волоконно-оптичних датчиках оптичне волокно може бути застосоване просто як лінія передачі, а може відігравати роль самого чуттєвого елемента датчика. В останньому випадку використовуються чутливість волокна до електричного поля (ефект Керра), магнітного полю (ефект Фарадея), до вібрації, температури, тиску, деформаціям (наприклад, до вигину). Багато з цих ефектів в оптичних системах зв'язку оцінюються як недоліки, у датчиках же їхня поява вважається скоріше перевагою, яку варто розвивати.

1.3.Одно- і багатомодові оптичні волокна

Оптичне волокно буває одного з двох типів [1]: одномодове, у якому поширюється тільки одна мода (тип розподілу переданого електромагнітного поля), і багатомодовое - з передачею безлічі (біля сотні) мод. Конструктивно ці типи волокон розрізняються тільки діаметром сердечника - світловодної частини, усередині якої коефіцієнт заломлення ледве вище, ніж у периферійній частині - оболонці.

У техніці використовуються як багатомодові, так і одномодові оптичні волокна. Багатомодові волокна мають великий (приблизно 50 мкм) діаметр сердечника, що полегшує їхнє з'єднання один з одним. Але оскільки групова швидкість світла для кожної моди різна, то при передачі вузького світлового імпульсу відбувається його розширення (збільшення дисперсії). У порівнянні з багатомодовими в одномодових волокон переваги і недоліки міняються місцями: дисперсія зменшується, але малий (5...10 мкм) діаметр сердечника значно ускладнює з'єднання волокон цього типу і введення в них світлового променя лазера.

Внаслідок цього одномодові оптичні волокна знайшли переважне застосування в лініях зв'язку, що вимагають високої швидкості передачі інформації (лінії верхнього рангу в ієрархічній структурі ліній зв'язку), а багатомодові найчастіше використовуються в лініях зв'язку з порівняно невисокою швидкістю передачі інформації. Це так названі когерентні волоконно-оптичні лінії зв'язку, де придатні тільки одномодові волокна.

У многомодовому оптичному волокні когерентність прийнятих світлових хвиль падає, тому його використання в когерентних лініях зв'язку непрактично, що і визначило застосування в подібних лініях тільки одномодових оптичних волокон.

Навпроти, хоча при використанні оптичних волокон для датчиків вищевказані фактори теж мають місце, але в багатьох випадках їхня роль вже інша. Зокрема , при використанні оптичних волокон для когерентних вимірів, коли з цих волокон формується інтерферометр, важливою перевагою одномодових волокон є можливість передачі інформації про фазу оптичної хвилі, що нездійсненно за допомогою багатомодових волокон.

Отже, у даному випадку необхідно тільки одномодовое оптичне волокно, як і в когерентних лініях зв'язку. Проте, на практиці застосування одномодового оптичного волокна при вимірюванні нетипово через невелику його дисперсію. Тобто у сенсорній оптоелектроніці, за винятком датчиків-інтерферометрів, використовуються багатомодові оптичні волокна. Ця обставина характеризується ще і тим, що в датчиках довжина використовуваних оптичних волокон значно менше, ніж у системах оптичного зв'язку.

1.4.Класифікація волоконно-оптичних датчиків і приклади їхнього застосування

Сучасні волоконно-оптичні датчики дозволяють вимірювати майже усе. Наприклад, тиск, температуру, відстань, положення в просторі, швидкість обертання, швидкість лінійного переміщення, прискорення, коливання, масу, звукові хвилі, рівень рідини, деформацію, коефіцієнт заломлення, електричне поле, електричний струм, магнітне поле, концентрацію газу, дозу радіаційного випромінювання і т.д.

Якщо класифікувати волоконно-оптичні датчики з точки зору застосування в них оптичного волокна, то, як уже було відзначено вище, їх

можна грубо розділити на датчики, у яких оптичне волокно використовується як лінія передачі, і датчики, у яких воно використовується як чуттєвий елемент. У датчиках типу "лінії передачі" використовуються в основному багатомодові оптичні волокна, а в датчиках сенсорного типу найчастіше - одномодові.

За допомогою волоконно-оптических датчиків з оптоволокном як лінією передачі можна вимірювати наступні фізичні величини: