Гидростанции - это важнейший инструмент обеспечения надежности и безопасности работы энергосистемы: в России ГЭС обеспечивают свыше 90% резерва регулировочной мощности, то есть при необходимости могут в считанные минуты увеличивать выработку, покрывая пиковые нагрузки. Гидротехнические сооружения ГЭС играют ключевую роль в защите от наводнений населения и хозяйственных объектов. Водохранилища гидростанций обеспечивают свыше трети объема хозяйственного и промышленного водоснабжения в России, свыше четверти объема орошения и обводнения, а регулирование стока рек позволят создавать глубоководные транспортные пути. Еще один важный аспект - это инструмент регионального развития территорий.
Сегодня российская гидроэнергетика - это порядка 100 средних и крупных действующих ГЭС, около 45 ГВт установленной мощности и 172 млрд. кВтч годовой выработки, то есть примерно каждый пятый киловатт-час в стране производится на ГЭС. Однако помимо своей основной функции - выработки электроэнергии - гидроэнергетика решает ряд других важнейших задач.
В ходе реформирования российской электроэнергетики происходят существенные изменения в ее функционировании: в декабре 2004 года была создана Федеральная гидрогенерирующая компания (ОАО «ГидроОГК»), которая объединила около половины всех российских гидростанций (50 ГЭС с мощностью 23,3 ГВт) и стала крупнейшей российской генерирующей компанией. Стратегия развития компании до 2020 года предполагает удвоение мощностей, что позволит сохранить паритет в сфере энергетических мощностей.
Основными задачами в гидроэнергетики России на ближайшие несколько лет являются строительство новых энергетических мощностей и развитие существующих - их пять.
Первое - Бурейская ГЭС. Второе - Богучанская ГЭС, уникальный объект, по которому долгое время не было реального решения. Третье - Сангтугинская ГЭС — первый наш опыт выхода за рубеж - в апреле 2009 года планируется эту ГЭС полностью ввести в строй. Четвертым - беспрецедентным проектом в гидроэнергетической сфере назван проект импорта российской электроэнергии в Китай - это означает строительство новых мощностей объемом около 6 миллионов киловатт. В настоящее время прорабатывается вариант строительства новых энергомощностей на Дальнем Востоке.
По данным исследований, до настоящего времени не используется значительная часть электрических мощностей Сибири - порядка 4 млн кВт, что на 1 млн кВт больше мощности вновь строящейся Богучанской ГЭС. Электрическую энергию в этом регионе вырабатывают четыре крупнейшие в мире гидроэлектростанции, четыре крупнейшие в России тепловые электростанции и ряд других станций. Энергетические запасы Сибири составляют более 50 млн кВт, а установленная мощность сибирских электростанций - 45 млн кВт.
Только пять гидроэлектростанций Енисейского каскада могли бы вырабатывать 33,5 млн кВт, а входящая в его состав Туруханская ГЭС (12 млн кВт) - третья в мире по установленной мощности. С учетом возможного прироста электрических мощностей на тепловых (Березовская ГРЭС, Харанорская ГРЭС) и гидроэлектростанциях (Богучанская ГЭС) и существующих темпов роста потребляемых мощностей прогнозируемая величина избыточной электроэнергии по Сибири к 2010 г. может составить более 20 млрд кВт.ч.
Такой огромный ресурс неиспользуемой энергии требует новых схем сбыта. Наиболее перспективным и выгодным покупателем электроэнергии из Сибири является Китай. По данным исследований российских и зарубежных специалистов, транспортировка электроэнергии из Сибири в Центр России и на Дальний Восток на расстояния 3600 км и более неэкономична в отличие от экспорта излишков электроэнергии в Китай на расстояние 2500 км. Строительство Бурейской ГЭС решило проблему дефицита электроэнергии на Дальнем Востоке и позволяет осуществлять ее продажу в Корею и северные районы Китая.
Не раз поднимался вопрос о возобновлении проекта экспорта электроэнергии в Китай и строительства энергомоста «Россия-Китай», который бы позволил привлечь дополнительные инвестиции в энергетику России в целом и Сибири в частности. Китай ежегодно увеличивает свои мощности на 12-15%, а это почти 25 млн кВт. Существующие и вновь построенные электростанции открывают перед Россией широкую перспективу поставки высокотехнологической продукции
Пятая задача - развитие приливной гидроэнергетики как «проекта с качественно новым технологическим прорывом».
2 Гидроэнергетика Сибири
Сибирь характеризуется высокой долей гидроэлектростанций. Здесь находятся крупнейшие ГЭС Ангаро-Енисейского каскада, работающие в составе объединенной энергосистемы Сибири, а также Хантайская и Курейская ГЭС - в изолированной Норильской энергосистеме. Значительно меньше доля ГЭС в электроэнергетике Дальнего Востока. Причем в Объединенной энергосистеме Востока, обслуживающей его южные регионы, действует только одна гидроэлектростанция - Зейская. При отсутствии других маневренных электростанций в ОЭС Востока наблюдается дефицит пиковых мощностей.
В настоящее время в Восточной Сибири и на Дальнем Востоке эксплуатируется 12 ГЭС суммарной установленной мощностью 25,8 млн. кВт. Из них три крупных ГЭС установленной мощностью 2870 МВт находятся на Дальнем Востоке. В Восточной Сибири наибольшая доля ГЭС в Республике Хакасии: в 1998 г. установленная мощность Саяно-Шуненской ГЭС составляла 96 % генерирующих мощностей республики, она производила 89 % всей вырабатываемой здесь электроэнергии. В Иркутской области эти показатели равнялись соответственно 70 % и 85 %. Свыше половины мощности и выработки электроэнергии приходилось на ГЭС (Усть-Хантайскую и Курейскую) в изолированной Норильской энергосистеме на севере Красноярского края.
Мощность ГЭС Восточной Сибири составляет 22,9 млн. кВт, или 63% от суммарной генерирующей мощности всех параллельно работающих электростанций.
На Дальнем Востоке, несмотря на низкий уровень освоенности гидроэнергопотенциала, роль гидроэлектростанций в электроснабжении отдельных дальне-восточных территорий очень существенна. Так, Вилюйские ГЭС-1, 2 полностью покрывают потребность в электроэнергии Западно-Якутского энергорайона.
Гидроэлектростанции играют решающую роль и в обеспечении бесперебойности энергоснабжения. С этой точки зрения можно особо выделить ангарские ГЭС, имеющие водохранилища многолетнего регулирования (Иркутскую и Братскую). Использование многолетних запасов воды из этих водохранилищ способствуют преодолению трудностей с топливоснабжением тепловых электростанций на всей территории, обслуживаемой ОЭС Сибири. Аналогичную роль играет Колымская ГЭС, обеспечивающая бесперебойное электро- и теплоснабжение населения и хозяйства Магаданской области при крайней неритмичности завоза топлива.
2.1 Ангаро-Енисейский каскад ГЭС
Ангаро-Енисейский каскад ГЭС включает: Иркутскую, Братскую, Усть-Илимскую и Богучанскую (строящуюся) на Ангаре; Красноярскую (Дивногорск), Майнскую (пос. Майна) и Саяно-Шушенскую (Саяногорск) на Енисее.
Гидроэлектростанции каскада - опорные узлы Единой энергетической системы Центральной Сибири, работают в единой энергосистеме Сибири в компенсационном, взаимозависимом режиме.
Ангарский каскад, крупнейший каскад гидроэлектростанций на р. Ангаре, располагающей огромными потенциальными запасами водной энергии, для использования которой намечено сооружение 6 крупных ГЭС с суммарной мощностью около 14 Гвт (млн. квт) и средней годовой выработкой свыше 70 Твт·ч (млрд. квт·ч) электроэнергии. Благоприятные условия местности позволяют возводить высоконапорные плотины при относительно незначительных удельных объёмах строительных работ и получать дешёвую электроэнергию. 1-й ступенью ангарского каскада была Иркутская ГЭС, введённая на проектную мощность 660 Мвт (тыс. квт) в 1958 году. 2 и 3-й ступенями в схеме низконапорные Суховская и Тельминская ГЭС с установленными мощностями по 400 Мвт каждая и суммарной выработкой электроэнергии 3,4 Твт·ч в средний по водности год. 4-я ступень каскада — Братская ГЭС, достигшая в 1966 году мощности 4,1 Гвт. В 1969 году в 40 км ниже устья правого притока Ангары — р. Илим строилась 5-я ступень — Усть-Илимская ГЭС, её мощность 4,3 Гвт, среднегодовая выработка 21,8 Твт·ч. Последняя ступень ангарского каскада — Богучанская ГЭС со среднемноголетней выработкой около 18 Твт·ч строится выше с. Богучаны. Ангарский каскад — основа для развития в районах Приангарья крупных энергоёмких промышленных комплексов по производству алюминия, титана, магния и других видов продукции.
2.2 Наиболее крупные ГЭС Сибири
Красноярская ГЭС, крупнейшая ГЭС мира, запущена в 1972 году. Расположена на р. Енисей, выше г.Красноярска, в месте пересечения Енисеем отрогов Восточного Саяна у г.Дивногорска. Установленная мощность 6000 Мвт (6 млн. квт), среднемноголетняя выработка электроэнергии — 20,4 млрд. квт×ч в год. В состав сооружений входят: русловая бетонная плотина высота 124 м, здание ГЭС длина 430 м, судоподъёмник, открытые распределительные устройства напряжением 220 и 500 кв. Длина напорного фронта гидроузла 1175 м, максимальный напор 101 м, расход воды через плотину 12000 м3/сек. Плотина образует Красноярское водохранилище.
В станционной части плотины размещены 24 водозаборных отверстия, а в водосбросной 7 водосливных пролётов шириной по 25 м. В здании ГЭС установлены 12 гидроагрегатов с турбинами радиально-осевого типа мощностью по 508 Мвт. Управление, регулирование и контроль работы электромеханического оборудования ГЭС осуществляются автоматически, с использованием средств телемеханики ближнего действия. Судоподъёмник продольно-наклонного типа с поворотным устройством расположен на левом берегу. Перемещение судов из одного бьефа в другой производится в самоходной судовозной камере.