Смекни!
smekni.com

Гидроэнергетический комплекс Сибири (стр. 3 из 3)

Первые гидроагрегаты пущены в ноябре 1967 году, в 1971 с пуском последнего, 12-го гидроагрегата ГЭС достигла проектной мощности, в июле 1972 года принята государственной комиссией в промышленную эксплуатацию.

Красноярская ГЭС — одна из наиболее экономичных ГЭС. Она является важнейшим опорным пунктом Объединённой энергосистемы Сибири. Расположение ГЭС практически в центре энергообъединения позволяет использовать её мощность и электроэнергию в любой части огромной территории, обслуживаемой энергосистемой.

Саяно-Шушенская ГЭС построенная в 1975году в долине р. Енисей, вблизи поселка Майна. Установленная мощность 6400 Мвт. Среднегодовая выработка электроэнергии составит 23,8 млрд.кВт.ч. В состав гидроузла входят: арочно-гравитационная плотина максимальной высотой 242 м и длина по гребню 1066 м; здание ГЭС приплотинного типа с 10 агрегатами по 640 Мвт; расчётный напор 194 м; эксплуатационный водосброс с водобойным колодцем; предусмотрена возможность устройства судоподъёмника. Плотина образует водохранилище сезонного регулирования полным объёмом 31,3 км3 и полезным объёмом 15,3 км3. Работы подготовительного периода начаты в 1964 году. Электроэнергия, вырабатываемая ГЭС, будет передаваться по высоковольтным линиям напряжением 500 квю в объединённую энергосистему Сибири. Саяно-Шушенская ГЭС — основа крупного территориально-производственного комплекса.

Братская ГЭС, одна из крупнейших в мире ГЭС. Сооружена на р.Ангаре в Падунском сужении вблизи г. Братска Иркутской области. Строительство начато в 1955 году, в 1961 году пущены первые 4 гидроагрегата. Проектная мощность ГЭС 4500 Мвт. Средняя годовая выработка электроэнергии 22,7 млрд. квт·ч. К 1967 году мощность станции достигла 4100 Мвт. В здании ГЭС установлено 16 гидроагрегатов с мощностью по 225 Мвт и 2 гидроагрегата по 250 Мвт. Турбины вертикальные радиально-осевые на напор 100 м и частоту вращения 125 об /м. В состав гидроузла входят: русловая бетонная плотина гравитационного типа длиной 924 м и максимальной строительной высотой 124,5 м, состоящая из станционной части (длиной 515 м, в которой расположены 20 водоприёмных отверстий и напорные трубопроводы), водосливной (длиной 242 м с 10 водосбросными отверстиями) и глухих частей общей длиной. 167 м; здание ГЭС длиной 516 м, расположенное у низовой грани станционной части плотины и примыкающее к левому берегу; береговые бетонные плотины общей длиной 506 м; правобережная земляная плотина длиной 2987 м и левобережная длиной 723 м; открытые распределительные устройства на напряжение 220 и 500 кв., расположенные на левом берегу р. Ангары. По гребню плотины проходит магистральная ж.-д. Тайшет — Лена, а ниже — шоссейная дорога. Напорные сооружения общей длиной 5140 метров образуют Братское водохранилище. Судоходные сооружения — объекты 2-й очереди.

При сооружении ГЭС, отдалённой от индустриальных центров, была создана мощная база строительной индустрии, большой комплекс предприятий Братского промышленного района и построен г.Братск. Электроэнергия, вырабатываемая ГЭС, по высоковольтным линиям э,лектропередачи 220 и 550 кв передаётся в Иркутско-Черемховский промышленный район, в район Красноярска и в объединённую энергетическую систему Восточной Сибири. В строительстве ГЭС по призыву партии и комсомола участвовали тысячи молодых рабочих и работниц, показавших образцы высокопроизводительного труда.

Иркутская ГЭС, электростанция Ангарского каскада, в 65 км от истока р. Ангары, в Иркутске. Мощность ГЭС 660 Мвт (660 тыс. квт). Установлено 8 гидроагрегатов с поворотно-лопастными турбинами и трёхфазными генераторами зонтичного типа. Среднегодовая выработка электроэнергии 4,1 млрд. квт×ч. Строительство проводилось в 1950 – 58 гг. В состав гидроузла входят: здание ГЭС совмещённого типа, земляная насыпная плотина общей длиной около 2,5 км и высотой 44 км, открытые распределительные устройства напряжением 110 и 220 кв. По гребню плотины проходит автомобильная дорога. Гидротехнические сооружения повышают средний уровень воды в озере Байкал, что позволяет использовать часть объёма озера в качестве водохранилища для многолетнего регулирования стока. ГЭС входит в Объединённую энергосистему Центральной Сибири и обеспечивает электроэнергией промышленность, ж.-д. транспорт и др. электропотребителей Иркутской области. Иркутская ГЭС стала первой крупной гидроэлектростанцией из построенных в Восточной Сибири.

В условиях дефицита топливных ресурсов большое значение имеет «Программа развития гидроэнергетики». Так в период до 2010 года должно быть завершено сооружение Бурейской ГЭС, Нижне-Бурейской ГЭС и Вилюйской ГЭС-3 на Дальнем Востоке, Зарамагской, Зеленчугских и Черекских ГЭС - на Северном Кавказе.

После 2010 года предусматривается завершение сооружения Богучанской ГЭС и Мокской ГЭС в Сибири, Усть-Среднеканской ГЭС и каскада Нижнезейских ГЭС на Дальнем Востоке. В период до 2020 года предполагается начало сооружения Южно-Якутского гидроэнергетического комплекса и каскада ГЭС на нижней Ангаре с вводом первых агрегатов головных ГЭС. На Дальнем Востоке вследствие высоких цен на топливо сооружение ГЭС более эффективно, чем в Сибири, и должно по возможности вестись высокими темпами. В ближайшие годы следует завершить строительство Бурейской ГЭС, которая позволит снять напряженность топливного баланса Дальнего Востока на предстоящие 10-15 лет. Кроме того, до 2010 года могут быть построены Нижнебурейская, Вилюйская-3 в Якутии, малые ГЭС на Камчатке. До 2015 года возможен также ввод Ургальской ГЭС в Хабаровском крае.


Заключение

Таким образом, в работе рассмотрено становление, развитие и перспективы гидроэнергетики России.

Большая часть потенциала гидроэнергетики сконцентрирована в районах Сибири и Дальнего Востока: здесь находится огромный ресурс производства дешевой электроэнергии.

Для решения приоритетных задач гидроэнергетики большое значение имеет «Энергетическая стратегия России на период до 2020».

Так в период до 2010 года должно быть завершено сооружение Бурейской ГЭС, Нижне-Бурейской ГЭС и Вилюйской ГЭС-3 на Дальнем Востоке и начат ввод мощностей строящихся электростанций.

После 2010 года предусматривается завершение сооружения Богучанской ГЭС и Мокской ГЭС в Сибири, Усть-Среднеканской ГЭС и каскада Нижнезейских ГЭС на Дальнем Востоке.

В период до 2020 года предполагается начало сооружения Южно-Якутского гидроэнергетического комплекса и каскада ГЭС на нижней Ангаре с вводом первых агрегатов головных ГЭС.

Широкомасштабное вовлечение новых ГЭС в энергобаланс ЕЭС России не только поспособствует вытеснению дефицитного газа, но и могло бы иметь весьма высокую цену на энергорынках Японии, Республики Корея, Северного Китая, где развитие энергетического сектора планируется практически исключительно за счет АЭС и ТЭС.

Гидроэнергетика в новом тысячелетии может стать структурным лидером в развитии энергетики России, т.к. это наиболее развитая, экологически безопасная и инвестиционно привлекательная отрасль.

Кроме этого, приоритетное внимание к развитию гидроэнергетики позволит сэкономить дорогостоящие первичные углеводородные ресурсы.


Список использованной литературы

1. Асарин А.Е. Развитие гидроэнергетики России / А.Е.Асарин // Гидротехн. стр-во, 2003.- № 1.- С. 2-7.

2. Беляев Л.С. Интеграция электроэнергетики восточных районов России и стран Северо-восточной Азии / Л.С. Беляев, Е.Д. Волкова, Н.И. Воропай и др. // Регион: экономика и социология, 2002. - №31. – С.4.

3. Васильев Ю.С. Состояние и перспективы развития гидроэнергетики России / Ю.С. Васильев // Известия Акад. Наук. Энергетика, 2003.- № 1.- С. 50-57.

4. Иванов И. Н. Гидроэнергетика Ангары и природная среда / АН СССР. Сибирское отделение; Байкальский экологический музей; Под ред. Г.И. Галазий.- Новосибирск: Наука, 1991.- 128 с.

5. Савельев В.А. Современные проблемы и будущее гидроэнергетики Сибири / В.А.Савельев. - Новосибирск: Наука, 2000. - 200 с.