В роботі [15] представлено результати вивчення використання CFD для оцінки характеристик високошвидкісного глісуючого судна, яке рухається зі сталою швидкість по спокійній воді. Для вивчення використовується неструктурований, багатофазний, кінцевий об’ємний код, який використовує метод об’єму рідини (VOF). Характеристика високошвидкісного судна глибоко пов’язана з орієнтацією корпуса у швидкості, що не може бути відома апріорно. Змінюється підйом глісуючих корпусів і кути атаки, як реакція на область тиску, створену потоком. Для врахування цих змін у положенні корпуса метод моделювання повинен гарантувати, що в підйомі була досягнута динамічна рівновага в момент обробки. Це досягнуто за допомогою ітераційної схеми, у якій область потоку була вирішена для дискретних орієнтацій корпуса. Робота складається з набору експериментальних випробувань моделі, для отримання даних, з якими чисельні результати порівнюються. Для цього було виконано три набори моделювань. Перший набір виконувався для прямого порівняння числових результатів з експериментальними. Другий набір моделювань виконаний для задоволеної умови рівноваги. Третій набір – відповідає стану рівноваги при підйомі та обробці. [15]
4 Основні гідродинамічні характеристики
4.1 Додатковий опір
Як зазначено вище, для конструювання суден необхідно вивчення гідродинамічних характеристик та передбачення поведінки судна в умовах природного хвилювання. Одним з параметрів, які необхідно обов’язково враховувати при конструюванні судна – є додатковий опір хвилі. В [14] увага зосереджується на впливі надводної форми носу на додатковий опорі. В роботі до задачі неусталеного хвилеутворення застосовується нелінійний 2D+T метод, в якому потік описується, використовуючи суперпозицію набігаючої хвилі з іншим збуреннями, які викликані корпусом. Не зважаючи на те, що включені процедури апроксимації, цей метод є практичним для дослідження нелінійних характеристик гідродинамічної сили. Для збільшення енерго-економічних суден, потрібно більше зменшення опору хвиль. Частково, це через те, що відношення додаткового опору хвиль до загального опору стає більшим. Хоча покращення форми корпусу дозволяє зменшити кінську силу для руху в стоячій воді, кінська сила, необхідна для руху в незмінних хвилях. Протилежна до цієї задачі, задача покращення форми корпуса через надводну геометрію коректна для конструювання судна, оскільки характеристика хвилеутворення, яка залежить від підводної форми корпуса, може зберігатися. Однак, використовуючи існуючі методи розрахунку, важко правильно розрізнити різницю між варіантами надводних форм корпуса. Зокрема, нелінійні ефекти динамічної сили, які виникають через розсіювання і дифракцію хвиль ще потрібно вивчити. Поступово, зрозуміло, що надводна форма носу впливає на усталені сили хвиль, тобто на додатковий опір, а не на рух хвилеутворення. Наприклад, вплив надводної форми носу на додатковий опір було експериментально досліджено Найто і ін. (1996). Вони прийшли до висновку, що тупоносі судна з різними надводними формами носу показали різні значення додаткового опору. Тому, розробка обчислювального інструмента, який дасть можливість проектувальникам судна обговорювати переваги надводних форм носу є важливим завданням. [14]
У багатьох застосування в морських умовах додатковий опір відіграє важливу роль. Але багато з існуючих методів недооцінюють додатковий опір при низьких частотах довжини хвилі. Відомо, що для опису руху плавання суда у хвилях дуже гарні результати для багатьох практичних форм корпусу показує теорія стрічки. В останні роки програми обчислювальних машин розвинулись таким чином, що можуть обчислити сили і рухи плавання судна у хвилях за допомогою лінійних дифракційних програм. Фактично, метод використовує лінеаризацію навколо незбуреного потоку навколо судна, що може привести до гарної апроксимації для тонкого судна. Для цього класу суден теорія стрічки і її зміни дають гарні результати. Однак, у випадку коротких хвиль ці методи мають тенденцію недооцінювати додатковий опір. Це формує складну задачу у випадку, якщо робляться спроби оптимізувати форму корпусу. Якщо судно має тупу форму корпуса, локальний сталий рух впливає на величину додаткового опору дуже сильно. У роботі [16] представлено часовий метод, який може вирішити задачі з різними видами лінеаризованих формулювань. Як вхід, програма може використати незбурений потік, потік подвійного корпуса або нелінійний сталий рух. Розглядається симетричне судно з рівномірним плаванням з постійною швидкістю U у хвилях, які поширюються в напрямку, що замикається з передовим напрямком судна. Водна глибина h позначається постійною. Рідина прийнята ідеальною. [16]
4.2 Максимальна осадка судна
При конструюванні суден варто також пам’ятати про такий важливий аспект, як небезпека так званого заземлення, тобто засідання судна на мілині. Для уникнення таких випадків при дослідженні параметрів судна необхідно проводити розрахунок його максимальної осадки. В [17] запропоновано два методи тонкого тіла для визначення максимальної осадки та диференту суден, які рухаються в довільним числах Фруда, включаючи транскритичну область: транскритична глибоководна теорія та теорія кінцевої глибини. Транскритична глибоководна теорія застосовувалась з використанням численних методів фур’є-спектрометра для визначення осадки та диференту через подвійне числове інтегрування. Ця теорія також розширена для випадку судна, яке рухається в каналі кінцевої ширини, однак, складність числового обчислення інтегралу сили і його обмеженість вказують, що теорія відкритих вод більш правильна. Теорія кінцевої глибини була покращена для використання для загальних форм корпусу. Ця теорія обчислює силу осадки та момент диференту, які є трохи коливальними. Оскільки теорія підносить до степеня нескінченну глибину, будь-яка похибка буде збільшуватись приблизно з квадратичною залежність від швидкості. Тому дана теорія не може використовуватись при великих числах Фруда. Через це та інші умови теорія кінцевої глибини складніша в виконанні за транскритичну глибоководну теорію. Порівняння результатів даних теорій з експериментальними результатами дали гарну збіжність у випадку мілкої води. Основна невідповідність між теоретичними та експериментальними результатами при таких умовах полягала в тому, що жодна теорія не передбачила підвищення судна у воді при малих числах Фруда. Невідповідності пояснюються якісно ефектом стінок каналу в експериментальних результатах. А це означає, що дані теорії дуже перспективні для передбачення осадки у відкритих водах. Однак без справжніх експериментів у відкритих водах не можна відповідним чином судити про точності методів. Транскритична глибоководна теорія набагато простіша теорія, і автори рекомендують її, як простий та точний метод передбачення осадки судна у відкритих водах. [17]
5 Режими глісування гідролітаків
Визначення гідродинамічних характеристик важливе не тільки для проектування суден, глісерів, а також і для конструювання гідролітаків, тобто літаків, які злітають з водної поверхні або сідають на неї. При цьому, необхідно визначити режими руху літака по водній поверхні. При русі по воді поверхневих літаків з малою швидкістю, підйом, який підтримує літак на водній поверхні обумовлений головним чином плавучістю. При збільшенні швидкості літака, таким чином, щоб водна поверхня гладко відокремилась від передньої кромки літака, літак, кажуть, глісую або ковзає по водній поверхні. Під час глісування підйом обумовлений головним чином силами гідродинаміки. Важливою особливістю глісуючого руху є явище бризкання, яке являє собою бризки викинуті вперед і по бокам глісуючого літака. Якщо кут атаки, який можна визначити як характерний кут між змоченою глісуючою поверхнею літака і незбуреною вільною поверхнею – маленький, то очікується, що товщина бризку буде теж маленькою. Оскільки теорія глісування має багато подібних ознак з теорією повітряного крила, для представлення бризку в задачах глісування використовується такий само тип особливостей як і в теорії повітряного крила.
Багатьма авторами розглядались двовимірні глісуючі поверхні з врахуванням ефекту гравітаційності. При вивченні тривимірних глісуючих поверхонь вимагається, щоб число Фруда було великим, а форма поверхні не була прямокутною. В попередніх рішеннях вважалось, що бризок був величиною другого порядку в куті атаки і тому ним можна було знехтувати в формуліровці лінеаризованої теорії. В роботі [18] розглянуто установлений тривимірний потенціальний потік, який проходить через глісуючу поверхню середнього розміру при великих числах Фруда. Вважається, що кут атаки маленький, для того, щоб задачу можна було лінеаризувати. Глісування представляється невідомими розподілами тиску по частині водної поверхні якраз під пластиною. Геометричною конфігурацією бризку знехтувано, а тиск прийнятий типу квадратного кореня. [18]
6 Досягнення високих швидкостей суден шляхом застосування підводних крил
Останнім часом зросла потреба в новому класі швидкодіючих транспортних засобів, які можуть відігравати проміжну роль у швидкості між вантажними літаками та звичайними судами. Було запропоновано кілька концепцій проекту для такого нового класу судів, ці концепції засновані на комбінаціях поверхні, що піднімається, повітряної подушки, SES (суден з поверхневим ефектом), і SWATH (маленький глісер з подвійним корпусом). В [19] представлено обчислювальний метод, який можна застосовувати до нелінійного потоку вільної поверхні повз двовимірне підводне крило мілкого занурення. Попередні роботи по підводному крилі використовували головним чином лінеаризовану умову вільної поверхні. Наприклад, Гієсінг і Сміт (1967) вирішували проблему методом інтегрального рівняння, який базується на функції Гріна, Баі (1978) застосував до задачі обмежений метод з кінцевим елементом, який базується на нежорсткій формі. Однак, Салвесен та вон Керзек (1975, 1976) спочатку обчислили стійкі нелінійні хвилі вільної поверхні через двовимірне підводне крило і вихрові точки під вільною поверхнею за допомогою ітераційного методу з кінцевим розходженням, попередньо розробленим ними (1974).