Курсова робота
Тема: Гідродинамічне глісування
Зміст
Вступ
1 Перші гідродинамічні теорії глісування
1.1 Динамічна підйомна сила
1.2 Методи оцінки гідродинамічних сил
1.3 Двовимірна теорія глісування
2 Вплив форми профілю на вирішення основних гідродинамічних задач
3 Комп’ютерні методи визначення гідродинамічних характеристик глісуючого комплексу
4 Основні гідродинамічні характеристики
4.1 Додатковий опір
4.2 Максимальна осадка судна
5 Режими глісування гідролітаків
6 Досягнення високих швидкостей суден шляхом застосування підводних крил
7 Теорії дослідження високошвидкісних суден
8 Розподіл енергії та використання енергії хвиль
Висновок
Перелік посилань
Вступ
В сучасних умовах існування людство зіткнулося з величезною проблемою – екологічною. Проблема екологічної катастрофи вже не просто не приваблива перспектива, а реальна загроза, що повисла над усім живим. Ця проблема проявляється в двох важливих аспектах: по-перше, це забруднення навколишнього середовища промисловими, транспортними викидами, по-друге, вичерпність ресурсів планети, в основному паливних ресурсів. Особливо гостро ця проблема стоїть в енергетиці та транспорті, оскільки саме в цих галузях активно використовуються паливні ресурси планети. При їх спалюванні утворюються шкідливі викиди, які потрапляють у повітря, воду, ґрунт, і цим самим забруднюють середовище нашого існування. Одним з рішенням цієї проблеми є створення екологічно чистих двигунів, нових економічних типів рушіїв, а також використання альтернативних джерел енергії. Варто пригадати прислів’я: „Чисто не там де прибирають, а там де не смітять”. Тому використання екологічно-чистих джерел енергії завжди буде займати провідне місце в галузі енергетики. У всьому світі активно проводяться дослідження по можливості використання альтернативних джерел енергії - сонячної, енергії вітру, морських хвиль та ін.
Проблема економії палива та використання альтернативних джерел енергії особливо актуальна для транспорту, зокрема водного. Тут особливу роль грає використання енергії хвиль, як додаткового джерела тяги в умовах природного хвилювання і використання (регенерації) хвильової енергії при русі в хвильовому сліді.
Судно, призначене для плавання в морських чи озерних басейнах, значну частину своєї діяльності проводить в умовах більшого чи меншого хвилювання. Хвилювання представляє собою одну з форм переносу механічної енергії, запас якої практично невичерпний. Наприклад, для судна довжиною
м, на хвилі, довжина якої дорівнює м і амплітуда м, безперервно протікає потік енергії по потужності рівній невеликій промисловій електростанції. Необхідно хоча б частину цієї енергії передати судну. Для цього необхідно забезпечити таку конструкцію дна судна, при якій опір води був би мінімальний а регенерація хвильової енергії максимальна.Практична реалізація принципу регенерації і використання енергії залежить від розв’язання багатьох теоретичних і технічних задач – від створення аналітичних приладів, які оперативно реєструють параметри хвилі, до систем автоматичного керування роботою комплексу. Однак головною залишається теоретична задача визначення всіх гідромеханічних параметрів при русі глісуючого комплексу.
Дані теоретичних досліджень гідродинамічних характеристик глісування систем пластин також необхідні при конструюванні швидких багатореданних суден, систем злету та посадки гідролітаків, вивчення та прогнозування режимів буксирування суден, вантажних платформ та ін.
1 Перші гідродинамічні теорії глісування
1.1 Динамічна підйомна сила
Перші спроби наукового вивчення глісування відносяться до періоду 1912-1914 років, однак серйозний розвиток цих робіт почався з кінця 20-х та початку 30-х років.
Розробка теорії глісування, яка дала пояснення фізичній суті механізму глісування і дозволяла отримати цілий ряд важливих висновків та кількісних співвідношень, була закінчена в 1931 році.
Ця теорія встановила наступний погляд на явище глісування та на його головну особливість – виникнення динамічної підйомної сили.
При русі поверхні глісера, встановленої під малим кутом до напрямку руху, маси води відтісняються нею донизу та в сторони. Для подолання інерції, яка приводить в рух маси води, повинна бути прикладена сила, направлена в сторону прискорення цих мас, а на глісуючій поверхні виникає рівна їй і протилежно направлена реакція. Вертикальна складова цієї реакції уявляє динамічну підйомну силу. Величина цієї сили визначається проекцією на вертикаль вектору кількості руху мас води, які щосекунди створюються.
З цих основних уявлень безпосередньо витікає, що при незмінній формі і положенню глісуючої поверхні динамічна підйомна сила повинна зростати зі зростанням швидкості. Теорія глісування враховує також і гідростатичні сили, які відбуваються внаслідок вагомості води; рівнодіюча цих сил представляє статичну підйомну силу, і дія її складається з дією динамічної сили.
Основи лінійної теорії глісування по поверхні невагомої рідини закладені Г. Вагнером. Вони викладені в його статтях [1], опублікованих в 1930-32 рр. Вагнер показав, що в основній області нижньої частини крила і глісуючої пластини при малих кутах a (практично до a =8 ¸ 10°) розподіл швидкості і тиску однаковий. Область бризкоутворення відіграє незначну роль у формуванні результуючої сил тиску, які діють на пластину, тому глісуюча пластина відчуває таку ж силу, як нижня частина крила. Даний висновок слугує базою для переносу багатьох результатів, отриманих в теорії крила, в область досліджень глісуючих поверхонь.
Для оцінки підйомної сили Ry та опору Rx , які діють на одиницю ширини плоскої або слабко зігнутої глісуючої пластини нескінченного розмаху в невагомій нев’язкій рідині, справедливі наступні формули:
, (1)
, (2)
де l – змочена довжина пластини, ес – стрілка прогину. Згідно формулі (1) поздовжній прогин пластини може чинити істотний вплив на підйомну силу, причому дія його еквівалентна відповідній зміні кута атаки a .
Рішення задачі про глісування пластини на поверхні важкої рідини вперше вдалося отримати Л. І. Сєдову в 1936 р. Задача ставилася як лінійна, кут атаки вважався малим, граничні умови на пластині і вільній поверхні зносилися на відрізки горизонтальної осі ОХ. Дослідження глісування слабко зігнутого контуру по поверхні важкої рідини зводиться до визначення потенціалу швидкості збуреної течії, яка відповідає умові постійності тиску на вільній поверхні, непротікання на контурі, відсутності вільних хвиль далеко попереду контурі викликаних швидкостей на нескінченно великій глибині [2].
При глісуванні пластини по поверхні важкої рідини підйомна сила може бути визначена по формулі Л. І. Сєдова:
.
Як видно з відношення (3), вплив вагомості рідини проявляється у зменшенні підйомної сили. Зі зростанням швидкості (Fr ®¥) формула (3) переходить у формулу (1). Чисельні розрахунки, проведені Ю. С. Чаплигіним, показали, що результати теорії глісування по поверхні невагомої рідини і теорії глісування по поверхні важкої рідини повністю співпадають при числах Fr ³ 4,25.
На сьогоднішній день плоскі нелінійні задачі теорії глісування розглядаються у відповідності з наступною схемою: потік, який набігає на пластину, розміщену під довільним кутом атаки по відношенню до напрямку швидкості на нескінченності, роздвоюється – основна його частина проходить під пластиною, а в протилежному напрямку вздовж пластини тече струмінь кінцевої товщини. Змочена довжина пластини не задається, а визначається в процесі рішення. Рішення зводиться до знаходження комплексної характеристичної функції і викликаної комплексної швидкості і здійснюється шляхом конформного відображення області течії на яку-небудь область з відомими межами, наприклад півколо чи півплощина.
Рух рідини умовно розбивається на дві області: внутрішню – поблизу пластини і зовнішню – удалині від неї. В кожній з цих областей будуються свої асимптотичні розклади.
У внутрішній області, де переважають інерційні сили над вагомістю, використовується розглянуте вище класичне рішення плоскої нелінійної задачі. В якості рішень для зовнішньої області, де переважає вплив вагомості, використовується рішення задачі про гравітаційні хвилі, викликані вихреджерелом, який рухається по вільній поверхні. Після об’єднання обох розкладів по певним правилам в області “загальної придатності” отримується рівномірно придатне у всьому потоці, єдине рішення задачі. В такій постановці кут атаки необмежений, і може бути заданою глибина занурення.
1.2 Методи оцінки гідродинамічних сил
До 1960-х теоретичні дослідження проблеми глісування були зведені головним чином до лінеаризованого двовимірного глісування (Ламб 1932, Грін 1936, Маріо 1951, Сквайр 1957, Кумбербатч 1958). Підходи, застосовані в цих вивченнях були подібні, тобто, невідомий розподіл тиску на глісуючій поверхні зв’язувався з її геометрією інтегральним рівнянням, але методи для оцінки інтегралу дуже різноманітні. Тривимірної задачею глісування займалися в 1960-их, але завжди з обмеженнями або в швидкості глісування, або в відносному подовженні глісуючої поверхні (Маріо 1967, Ванг та Рісмей 1971, Шен та Огільві 1972, Так 1975). Докторс (1975) був першим в вивченні тривимірного глісування без цих обмежень. [3] У його підході, були прийняті кінцеві елементи тиску для того, щоб представляти змочені області глісуючої поверхні, а у повторюваній процедурі, змочена область була пристосована так, щоб задовольнити умову Кута для задньої кромки до тих пір поки вона нарешті досягне постійного значення. Але розподіли тиску, отримані таким чином були сильно осцилюючі. Веліком та Джахангір (1978) і пізніше Тонг (1989) задали змочену область заздалегідь, потім обчислили розподіл тиску та форму транцю. Коливання тиску, які відкрив Докторс, уникались коли число батокса було не більше п’яти або шести, в іншому випадку вони все ще відбувалися б. Вважалось, що причина таких коливань була в розривах тиску на бокових гранях постійного елементу тиску, який використовувався, для збудження високо-нерегулярного підйому вільної поверхні в області біля бокових граней і їх потоків, і отже вносить великі сумніви в умову границі корпусу.