Смекни!
smekni.com

Грозы, удары молний, градобитие (стр. 6 из 6)

Когда тросы непараллельны или разновысоки, либо их высота изменяется по длине пролета, для оценки надежности их защиты следует воспользоваться специальным программным обеспечением. Также рекомендуется поступать при больших провесах тросов в пролете, чтобы избежать излишних запасов по надежности защиты.

2.1.1.5 Зоны защиты замкнутого тросового молниеотвода

Расчетные формулы данного подраздела могут использоваться для определения высоты подвеса замкнутого тросового молниеотвода, предназначенного для защиты с требуемой надежностью объектов высотой h0 < 30 м, размещенных на прямоугольной площадке площадью S0 во внутреннем объеме зоны при минимальном горизонтальном смещении между молниеотводом и объектом, равном D (рис. 17). Под высотой подвеса троса подразумевается минимальное расстояние от троса до поверхности земли с учетом возможных провесов в летний сезон.

Для расчета h используется выражение:

, (14)

в котором константы А и В определяются в зависимости от уровня надежности защиты по следующим формулам:

а) надежность защиты Рз = 0,99

, (15)
, (16)

Расчетные соотношения справедливы, когда D > 5 м. Работа с меньшими горизонтальными смещениями троса нецелесообразна из-за высокой вероятности обратных перекрытий молнии с троса на защищаемый объект. По экономическим соображениям замкнутые тросовые молниеотводы не рекомендуются, когда требуемая надежность защиты меньше 0,99.

Если высота объекта превышает 30 м, высота замкнутого тросового молниеотвода определяется с помощью программного обеспечения. Также следует поступать для замкнутого контура сложной формы.

После выбора высоты молниеотводов по их зонам защиты рекомендуется проверить фактическую вероятность прорыва компьютерными средствами, а в случае большого запаса по надежности провести корректировку, задавая меньшую высоту молниеотводов.

2.1.2 Защита от вторичных воздействий молнии

Пространство, в котором расположены электрические и электронные системы, должно быть разделено на зоны различной степени защиты. Зоны характеризуются существенным изменением электромагнитных параметров на границах. В общем случае, чем выше номер зоны, тем меньше значения параметров электромагнитных полей, токов и напряжений в пространстве зоны.

Зона 0 – зона, где каждый объект подвержен прямому удару молнии, и поэтому через него может протекать полный ток молнии. В этой области электромагнитное поле имеет максимальное значение.

Зона 0Е – зона, где объекты не подвержены прямому удару молнии, но электромагнитное поле не ослаблено и также имеет максимальное значение.

Зона 1 – зона, где объекты не подвержены прямому удару молнии, и ток во всех проводящих элементах внутри зоны меньше, чем в зоне 0Е; в этой зоне электромагнитное поле может быть ослаблено экранированием.

Общие принципы разделения защищаемого пространства на зоны молниезащиты показаны на рис. 18.

На границах зон должны осуществляться меры по экранированию и соединению всех пересекающих границу металлических элементов и коммуникаций.

Две пространственно разделенные зоны 1 с помощью экранированного соединения могут образовать общую зону (рис. 19).

Экранирование является основным способом уменьшения электромагнитных помех.

Металлическая конструкция строительного сооружения используется или может быть использована в качестве экрана. Эта экранирующая структура образует электромагнитный экран с отверстиями (за счет окон, дверей, вентиляционных отверстий, шага сетки в арматуре, щелей в металлическом фасаде, отверстий для линий электроснабжения и т.п.). Для уменьшения влияния электромагнитных полей все металлические элементы объекта электрически объединяются и соединяются с системой молниезащиты (рис. 20).

Если кабели проходят между соседними объектами, заземлители последних соединяются для увеличения числа параллельных проводников и уменьшения, благодаря этому, токов в кабелях. Такому требованию хорошо удовлетворяет система заземления в виде сетки. Для уменьшения индуцированных помех можно использовать:

внешнее экранирование;

рациональную прокладку кабельных линий;

экранирование линий питания и связи.

Все эти мероприятия могут быть выполнены одновременно.

Соединения металлических элементов необходимы для уменьшения разности потенциалов между ними внутри защищаемого объекта. Соединения находящихся внутри защищаемого пространства и пересекающих границы зон молниезащиты металлических элементов и систем выполняются на границах зон. Осуществлять соединения следует с помощью специальных проводников или зажимов и, когда это необходимо, с помощью устройств защиты от перенапряжений.

Все входящие снаружи в объект проводники соединяются с системой молниезащиты.

Устройство защиты от перенапряжений выбирается выдерживающим часть тока молнии, ограничивающим перенапряжения и обрывающим сопровождающие токи после главных импульсов.

Максимальное перенапряжение Umax на входе в объект координируется с выдерживаемым напряжением системы.

Чтобы значение Umax сводилось к минимуму, линии присоединяются к общей шине проводниками минимальной длины.

Все проводящие элементы, такие как кабельные линии, пересекающие границы зон молниезащиты, соединяются на этих границах. Соединение осуществляется на общей шине, к которой также присоединяются экранирующие и другие металлические элементы (например, корпуса оборудования).

Для контактных зажимов и устройств подавления перенапряжений параметры тока оцениваются в каждом отдельном случае. Максимальное перенапряжение на каждой границе координируется с выдерживаемым напряжением системы. Устройства защиты от перенапряжений на границах различных зон также координируются по энергетическим характеристикам.

Все внутренние проводящие элементы значительных размеров, такие как направляющие лифтов, краны, металлические полы, рамы металлических дверей, трубы, кабельные лотки присоединяются к ближайшей общей шине или другому общему соединительному элементу по кратчайшему пути. Желательны и дополнительные соединения проводящих элементов.

Есть два способа присоединения к заземлителю металлических частей информационных систем, таких как корпуса, оболочки или каркасы: соединения выполняются в виде радиальной системы или в виде сетки.

При использовании радиальной системы все ее металлические части изолируются от заземлителя на всем протяжении кроме единственной точки соединения с ним. Обычно такая система используется для относительно небольших объектов, где все элементы и кабели входят в объект в одной точке.

Радиальная система заземления присоединяется к общей системе заземления только в одной точке. В этом случае все линии и кабели между устройствами оборудования должны прокладываться параллельно образующим звезду проводникам заземления для уменьшения петли индуктивности.

При использовании сетки ее металлические части не изолируются от общей системы заземления (рис. 21). Сетка соединяется с общей системой во многих точках. Обычно сетка используется для протяженных открытых систем, где оборудование связано большим числом различных линий и кабелей и где они входят в объект в различных точках. В этом случае вся система обладает низким сопротивлением на всех частотах.

Обе конфигурации, радиальная и сетка, могут быть объединены в комплексную систему, как показано на рис. 22.

Основная задача заземляющего устройства молниезащиты – отвести как можно большую часть тока молнии (50% и более) в землю. Остальная часть тока растекается по подходящим к зданию коммуникациям (оболочкам кабелей, трубам водоснабжения и т.п.) При этом не возникают опасные напряжения на самом заземлителе. Эта задача выполняется сетчатой системой под зданием и вокруг него.

Арматура бетона внизу фундамента соединяется с системой заземления. Арматура должна образовывать сетку, соединенную с системой заземления обычно через каждые 5 м.

Можно использовать сетку из оцинкованной стали с шириной ячейки обычно 5 м, приваренную или механически прикрепленную к прутьям арматуры обычно через каждый 1 м. Концы проводников сетки могут служить заземляющими проводниками для соединительных полос. На рис. 23 и 24 показан пример сетчатого заземляющего устройства.

Вывод

Проделав данную работу можно с уверенностью сказать, что, для того, чтобы снизить затраты на восстановление зданий и сооружений, магистралей, с/х угодий и прочих экономических комплексов области от негативных последствий гроз, градобитий и молний, необходимо прибегать к определенным мерам:

1. Мониторинг и прогнозирование направления распространения стихийного бедствия, оценка степени опасности для населения;

2. Задействование систем оповещения при угрозе для жизни и здоровья людей, организованный и самостоятельных вывод (вывоз) населения из опасных зон; Информирование населения о правилах поведения;

3. Зашита зданий и сооружений от молний состоит в безопасном заземлении электрических импульсов, т.е. в применении громоотводов;

4. Для борьбы с градом используют «расстрел» градоопасных облаков снарядами, снаряженными специальными химическими веществами.

Для уменьшения риска последствий опасных и особо опасных явления природы необходимы:

1. информация об их возможном возникновении (по данным наблюдений и прогнозов);

2. своевременное доведение этой информации до административных органов, соответствующих уровню необходимых защитных мер;

3. наличие научно-обоснованных нормативов приемлемого риска;

4. наличие системы моделирования процесса воздействия опасного природного явления на условия жизни и деятельности людей, оценки ожидаемого ущерба и уровня риска.

Список использованной литературы

1. «Наука и жизнь», №2, 2007 г.

2. http://www.rubatech.ru

3. http://vk.rshu.ru

4. http://archive.cadmaster.ru

5. http://www.energame.su/pue2.web/_a-c-e-e.html

6. http://www.stroing.ru/articles/682

7. http://www.ecomos.ru/kadr22/terminyMax.asp

8. http://meteoweb.ru/phenom.php