Смекни!
smekni.com

Действие физических сил на конструкцию (стр. 2 из 3)

Решение

mX=SXi 1 Fтр=fN

mX=Gsina-FcoпрN=Gcosa

mX=Gsina-fGcosa

X=gsina-fgcosa

X=(g(sina-fcosa) t+ C1

X=(g(sina-fcosa)/2) t2+ C1t+ C2

При нормальных условиях : t=0 x=0

X=C1 X= C2=> C1=0

X=g(sina-fcosa) t+ 1 X=(g(sina-fcosa)/2) t2

X=VвX=L

Vв=g(sinα-ƒ*cosα)τ

L=((g(sinα-ƒ*cosα)τ)/2)τ

ƒ=tgα-(2L/τ *g*cosα)=1-0,8=0,2

Vв=2l/τ=6/1=6м/с

Рассмотрим движение тела от точки В до точки С показав силу тяжести действующую на тело , составим дифференциальное уравнение его движения .mx=0 my=0

Начальные условия задачи: при t=0

X0=0 Y0=0

X0=Vв*cosα ; Y0=Vв*sinα

Интегрируем уравнения дважды

Х=C3 Y=gt+C4

X= C3t+ C5

Y=gt /2+C4t+C6, при t=0

X=C3; Y0=C4

X=C5; Y0=C6

Получим уравнения проекций скоростей тела.

X=Vв*cosα , Y=gt+Vв*sinα

и уравнения его движения

X=Vв*cosα*tY=gt /2+Vв*sinα*t

Уравнение траектории тела найдем , исключив параметр tиз уравнения движения. Получим уравнение параболы.

Y=gx/2(2Vв*cosα) + xtgα

В момент падения y=hx=d

d=h/tgβ=6/1=6м

Ответ:ƒ=0,2 d=6 м

4. Определение реакций опор составной конструкции (система двух тел)

Задание: Конструкция состоит из двух частей. Установить, при каком способе соединения частей конструкции модуль реакции

наименьший, и для этого варианта соединения определить реакции опор, а также соединения С.

Дано:

= 9,0 кН;
= 12,0 кН;
= 26,0 кН
м;
= 4,0 кН/м.

Схема конструкции представлена на рис.1.

Рис.1. Схема исследуемой конструкции.

Решение:

1) Определение реакции опоры А при шарнирном соединении в точке С.

Рассмотрим систему уравновешивающихся сил, приложенных ко всей конструкции (рис.2.). Составим уравнение моментов сил относительно точки B.

Рис.2.

(1)

где

кН.

После подстановки данных и вычислений уравнение (1) получает вид:

кН (1’)

Второе уравнение с неизвестными

и
получим, рассмотрев систему уравновешивающихся сил, приложенных к части конструкции, расположенной левее шарнира С (рис. 3):

Рис. 3.

.

Отсюда находим, что

кН.

Подставив найденное значение

в уравнение (1’) найдем значение
:

кН.

Модуль реакции опоры А при шарнирном соединении в точке С равен:

кН.

2) Расчетная схема при соединении частей конструкции в точке С скользящей заделкой, показанной на рис. 4.

Рис. 4

Системы сил, показанные на рис. 2 и 4, ничем друг от друга не отличаются. Поэтому уравнение (1’) остается в силе. Для получения второго уравнения рассмотрим систему уравновешивающихся сил, приложенных к части конструкции, располоденной левее скользящей заделки С (рис. 5).

Рис. 5


Составим уравнение равновесия:

и из уравнения (1’) находим:

Следовательно, модуль реакции при скользящей заделке в шарнире С равен:

кН.

Итак, при соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении (≈ 13%). Найдем составляющие реакции опоры В и скользящей заделки.

Для левой от С части (рис. 5а)

,

кН.

Составляющие реакции опоры В и момент в скользящей заделке найдем из уравнений равновесия, составленных для правой от С части конструкции.

кН*м

кН

;
кН

Результаты расчета приведены в таблице 1.

Таблица 1.

Силы, кН Момент, кН*м
XA YA RA XC XB YB MC
Для схемы на рис. 2 -7,5 -18,4 19,9 - - - -
Для схемы на рис. 4 -14,36 -11,09 17,35 -28,8 28,8 12,0 -17,2

Дано :

R2=15; r2=10; R3=20; r3=20

X=C2t2+C1t+C0

При t=0 x0=8

=4

t2=2 x2=44 см

X0=2C2t+C1

C0=8

C1=4

44=C2 *22+4*2+8

4C2=44-8-8=28

C2=7

X=7t2+4t+8

=V=14t+4

a=

=14

V=r2

2

R2

2=R3
3

3=V*R2/(r2*R3)=(14t+4)*15/10*20=1,05t+0,3

3=
3=1,05

Vm=r3*

3=20*(1,05t+0,3)=21t+6

atm=r3

=1,05t

atm=R3

=20*1,05t=21t

anm=R3

23=20*(1,05t+0,3)2=20*(1,05(t+0,28)2

a=

5. Применение теоремы об изменении кинетической энергии к изучению движения механической системы

Исходные данные.

Механическая система под действием сил тяжести приходит в движение из состояния покоя. Трение скольжения тела 1 и сопротивление качению тела 3 отсутствует. Массой водила пренебречь.

Массы тел - m1, m2, m3, m4; R2, R3, R4 – радиусы окружностей.


m1, кг m2, кг m3, кг m4, кг R2, см R3, см s, м
m m/10 m/20 m/10 10 12 0.05π

Найти.

Пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определит скорость тела 1 в тот момент, когда пройденный им путь станет равным s.