Тут є стохастичність при K > 1. Дуже важлива умова, що накладається на розглядувані далі системи, — финитность їх динаміки у фазовому просторі. Цього зауваження набуває глибший сенс для диссипативних систем, де осциляторна динаміка може бути взагалі відсутньою. Зокрема, характеристичні показники можуть не мати уявної частки ні при яких реальних значеннях параметрів.
Аттрактори і репеллери. Порівняльний аналіз особливостей на фазовій плоскості для гамильтоновских і диссипативних систем якнайкращим способом представляє їх відмінність. Структура фазового простору в диссипативному випадку набагато багатша, і тому тут слід чекати різноманітнішу динаміку систем.
Однією з відмітних властивостей диссипативних систем є існування аттракторов і репеллеров. Під «аттрактором» розуміється будь-яка притягуюча безліч. Прикладами аттракторов можуть бути стійкий фокус, стійкий граничний цикл. «Репеллером» є відштовхуюча безліч крапок. Такою властивістю володіють, наприклад, нестійкий фокус і нестійкий граничний цикл. При t > : фазові траєкторії все ближче наближаються до аттрактору. Система наближається до деякого сталого режиму, точки якого належать безлічі А+, що є аттрактором. Аттрактор є інваріантна безліч, тобто
Репеллер легко зрозуміти, якщо представити його як аттракторА-, до якого прагнуть фазові траєкторії при t > -. Він також є інваріантним безліччю:
Стохастичний аттрактор. На перший погляд здається, що існування аттракторов виключає можливість стохастичної динаміки у фазовому просторі, оскільки з часом відстань між крапками фазової траєкторії і точками безлічі А+ повинно прагнути до нуля. Тому з часом траєкторія все більше наближається до крапки або циклу, в структурі яких немає нічого випадкового. Природа, проте, розпорядилася інакше.
Існує притягуюча безліч, сама структура якої є дуже складною. Її не просто описати, але можна вказати її головну особливість. Динаміка крапки на такій структурі в будь-якому можливому для аналізу сенсі є випадковою подібно до того, як це має місце в гамильтоновских системах. Така притягуюча безліч, на якій реалізується стохастична динаміка, називатимемо стохастичним аттрактором.У поняття стохастичності вкладаються, по суті, ті ж не дуже строго певні поняття, що апелюють швидше до фізичного сенсу, чим до строгого визначення. Перерахуємо їх.
1. Система здійснює фінітний рух.
2. У кінцевій області фазового простору є локальна нестійкість. Розгледимо цей пункт докладніше.
У гамильтоновских системах траєкторія достатньо швидко заповнювала весь фазовий простір унаслідок ергодичності і перемішування. Тепер ці поняття представляються анахронізмом, оскільки траєкторія притягується до деякої безлічі As, яка не лише є частка фазового простору, але і може мати нульову міру. Можна, проте, вчинити таким чином. Скористаємося інваріантністю As
(1.29)і тим, що через деякий не дуже великий час точки фазової траєкторії дуже близькі до точок As. Тому поняття локальної нестійкості можна ввести не у фазовому просторі Г, а в :
(1.30)тут індекс Asпри D означає, що відстань D береться між двома траєкторіями, початкові точки яких належать As.
Наступне важливе зауваження дозволяє зняти індекс As (1.30). Якщо t0не дуже мало, то відзнака положення точок реальної траєкторії від положення відповідних точок Asмало. Їм можна нехтувати, і тому расходимость траєкторій згідно із законом
(1.31)відбуватиметься для будь-якої пари крапок в деякій області фазового простору кінцевої міри, якщо тільки виконана важлива нерівність
(1.32)Доказ існування часу
може виявитися достатньо складним для реальних систем, хоча сам факт його існування може представлятися цілком очевидним.3. Існують змінні z такі, що розчіпляється корелятор
(1.33)де f і g - деякі інтегровані функції і
(1.34)Так само, як і при переході від (1.30) до (1.31), нерівність (1.32) дозволяє зняти індекс Asу формулах (1.33) і (1.34). Тоді їх вигляд нічим не відрізняється від визначень в гамильтоновском випадку, якщо замінити dAs(z) на dГ(z) в (1.34).
Властивість (1.34) означає існування процесу перемішування, який, проте, реалізується тепер не на всьому фазовому просторі, а на деякій безлічі As. Виправданням цьому є те, що при виконанні нерівності (1.32) відзнака області, фазовою траєкторією, що покривається, від Asмало.
Двома іншими формами непередбачуваних, нерегулярних рухів є перемежана і перехідний хаос. В разі перемежаної сплески хаотичного руху, або шуму, чергуються з періодами регулярного руху (рис. 2.1).
Рис. 2.1. Переміжний хаотичний рух.
Таку поведінку спостерігав ще Рейнольдс в своїх експериментах по вивченню передтурбулентного режиму в трубах (1883 р.). Перехідний хаос спостерігається також в деяких системах як передвісник стаціонарного хаосу. За певних початкових умов система може поводитися квазівипадковим чином, тобто її траєкторії можуть рухатися у фазовому просторі, неначебто вони знаходилися на дивному аттракторе, але через деякий час рух виходить на регулярний аттрактор, як в разі періодичних коливань. Інколи для експериментального визначення критичного параметра для перемежаної і перехідного хаосу використовуються властивості подібності нелінійного руху. В разі перемежаної, коли поведінка системи близька до періодичного руху, але час від часу зазнає короткі сплески перехідного хаосу, пояснення такої поведінки в термінах одновимірних відображень, або різницевих рівнянь, була дане Манневілем і Помо.
Як показали чисельні експерименти з відображеннями, середня тривалість періодичного руху <@> між двома послідовними хаотичними сплесками складає величину
(2.1)де _ - параметр (наприклад, швидкість рідини, амплітуда сили, що вимушує, або напруга, що вимушує), що управляє _с — критичне значення параметра _, при якому виникає хаотичний рух. Із збільшенням настроєння _ - _с тривалість хаотичного інтервалу збільшується, а тривалість періодичного інтервалу скорочується. Таке явище можна було б назвати повзучим хаосом.
Для експериментального визначення параметра _с необхідно зміряти два середні часи, <@>, і <@>2, при відповідних значеннях параметра, що управляє _1 і _2. Це дозволить опреде-шть коефіцієнт пропорційності в співвідношенні (2.1), а також величину _с. Але, встановивши «кандидата» в _с, необхідно потім зміряти інші значення (<@> _), щоб підтвердити закон подібності (2.1).
Випадок перехідного хаосу був досліджений Гребоги і ін. з Університету штату Меріленд в серії робіт по чисельних експериментах з двовимірними відображеннями. У роботах ці автори розгледіли двовимірне узагальнення одновимірного квадратичного різницевого рівняння, що отримало назву «Відображення Енона»:
де J — визначник якобиана, службовець коефіцієнтом стискування майданів при відображенні. У дослідженнях мэрилендской групи коефіцієнт J був вибраний рівним -0,3, а параметр ? варіювався в певних межах. Наприклад, при ? > ?0 = 1,062371838 спостерігалося народження з траєкторій з періодом 6, дивного аттрактора, що складається з 6 окремих часток, який існує в діапазоні ?0 < ? < ?c = 1,080744879
При ? > ? з траєкторія при ітераціях відображення Енона блукає навколо «примари» дивного аттрактора на плоскості; після чого в системі встановлюється періодичний режим з періодом 4.
Гребоги і ін. виявили, що середня тривалість <@> перехідного хаосу задовольняє закону подібності
(2.2)Середнє було знайдене шляхом вибору 102 початкових умов при кожному виборі ?. Початкові умови вибиралися в первинній області тяжіння дивного аттрактора, що припинив існування. Тривалість таких перехідних хаотичних режимів може бути дуже велика. Наприклад, в разі відображення Енона Гребоги і його співробітники виявили, що <@> : 104 при і <@> : 103 при
.Та ж група дослідників виявила відображення, що породжують суперперехідний хаос, в якому тривалість перехідного періоду задовольняє закону подібності
. (2.3)Ці результати дозволяють передбачити, що час життя деяких перехідних хаотичних режимів може перевершувати тривалість будь-якого експерименту. Математика, що зачіпає в цих дослідженнях, пов'язана з гомоклиническими точками перетину стійкого і нестійкого многообразий при відображеннях. Виникнення гомоклинических точок перетину мэрилендская група називає кризами.