БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
кафедра ЭТТ
РЕФЕРАТ на тему:
«Дифракционная структура изображения. Критерии качества оптического изображения»
МИНСК, 2008
Предположим, что в оптической системе аберрации отсутствуют
. Тогда зрачковая функция оптической системы будет выглядеть следующим образом: , (1)где
– область зрачка в канонических координатах.Будем считать, что пропускание равномерно по зрачку, то есть
. Тогда, поскольку в канонических координатах зрачок всегда круглый, выражение (1) можно записать следующим образом: . (2)То есть зрачковая функция равна единице в пределах круга, и нулю на всей остальной области, и следовательно, математически описывается при помощи функции
: . (3)Чтобы получить функцию рассеяния точки при отсутствии аберраций, нужно взять обратное преобразование Фурье от безаберрационной зрачковой функции, то есть от функции
: , (4)где
– функция Бесселя первого рода, первого порядка.Картина ФРТ для безаберрационной оптической системы (рис.1) состоит из центрального максимума диаметром 1.22 канонических единиц и побочных максимумов – колец с шагом, постепенно приближающимся к 0.5 канонических единиц. Безаберационная ФРТ симметрично относительно оптической оси. Центральный максимум содержит 83.8% всей энергии (его высота равна единице), первое кольцо – 7.2% (высота 0.0175), второе 2.8% (высота 0.0045), третье 1.4% (высота 0.0026), четвертое 0.9%.
Рисунок 1 - Функция рассеяния точки в отсутствие аберраций
Центральный максимум ФРТ называется диском Эри (Airy). Диаметр диска Эри в реальных координатах на изображении:
, (5)где
– апертура осевого пучка.Диск Эри в общем случае может быть не круглым, если меридиональная
и сагиттальная апертуры различны.Из выражения (9.39) следует, что поскольку апертура для изображения ближнего типа не может быть больше показателя преломления, изображение точки для ближнего типа не может быть меньше длины волны.
На рис.2 показан вид ФРТ для различных функций пропускания. Если пропускание уменьшается к краям зрачка (2), то центральный максимум ФРТ расширяется, а кольца исчезают. Если пропускание увеличивается к краям зрачка (3), то центральный максимум сужается, а интенсивность колец увеличивается. Эти изменения по-разному влияют на структуру изображения сложного объекта, и, в зависимости от требований, используются различные функции пропускания, “накладываемые” на область зрачка. Это явление называется аподизацией.
Рисунок 2 - Влияние неравномерности пропускания по зрачку на ФРТ
Оптическая передаточная функция вычисляется при помощи выражения для автокорреляции зрачковой функции. Для безаберрационной оптической системы волновая аберрация W=0, тогда интеграл автокорреляции будет выглядеть следующим образом:
, (6)где
– область интегрирования, показанная на рис.3.Рисунок 3 - Области зрачков, смещенные относительно друг друга на
Таким образом, безаберрационная ОПФ пропорциональна площади перекрытия двух зрачков
, которая является функцией пространственных частот. Из рис. 3 следует, что максимальная каноническая пространственная частота . Для более высоких частот площадь становится нулевой (рис.4).Максимальной канонической пространственной частоте соответствует предельные реальные пространственные частоты:
. (7)Рисунок 4 - Безаберрационная ОПФ.
Таким образом, для реальной оптической системы при отсутствии аберраций ОПФ не соответствует ОПФ идеальной системы, и всегда ограничена предельными частотами, обусловленными дифракцией света.
Разрешающая способность определяет способность оптической системы изображать раздельно два близко расположенных точечных предмета.
Предельная разрешающая способность – это минимальное расстояние sR между двумя точками, при котором их изображение отличимо от изображения одной точки.
Критерий Релея гласит, что при провале в распределении интенсивности в изображении двух близких точек в 20% точки будут восприниматься как раздельные. Для этого необходимо, чтобы центральный максимум в изображении одной точки приходился бы на первый минимум в изображении другой (рис. 5). Для оптических систем при отсутствии аберраций канонических единиц.
Рисунок 5 - Разрешение по Релею.
Разрешение по Релею удовлетворительно характеризует качество изображения астрономических телескопов, спектральных приборов, для которых предметами являются близко расположенные точки или линии, а также визуальных приборов (предназначенных для работы с глазом).
Критерий Фуко применяется для оценки качества изображения оптических систем, передающих объекты сложной структуры. Разрешающая способность R определяется как максимальная пространственная частота периодического тест-объекта, состоящего из черно-белых штрихов (миры Фуко), в изображении которого еще различимы штрихи. Разрешающую способность обычно определяют для миры единичного (абсолютного) контраста по графику ЧКХ оптической системы (рис. 6). Разрешающая способность Rопределяется для заданного контраста (обычно для контраста k¢=0.2).
Рисунок 6 - Разрешающая способность по Фуко
Предельная разрешающая способность R0 для оптических систем определяется размерами зрачка, длиной волны и аберрациями.
Влияние малых аберраций (волновая аберрация составляет доли длин волн) на ФРТ проявляется в том, что часть энергии из центрального максимума переходит в кольца. В результате в центральном максимуме остается около 60-70% вместо 84%, при этом размеры центрального максимума сохраняются, а интенсивность в центре уменьшается (рис. 7).
Рисунок 7 - Влияние аберраций на ФРТ.
Аберрации разных типов по-разному влияют на вид пятна рассеяния (картину Эри). В случае симметричных аберраций (расфокусировка, сферическая) сохраняется радиальная симметрия пятна (рис. 8а). В случае несимметричных аберраций (кома, астигматизм) симметрия пятна нарушается (рис. 8б, рис. 8в).
Рисунок 8 - Картины Эри для аберраций различных типов
При дальнейшем увеличении аберраций сходство ФРТ с безаберрационной полностью теряется, и ее форма определяется картиной поперечных аберраций (точечной диаграммой). Практически вся энергия из центрального максимума перекачивается в кольца (в центральном максимуме остается меньше 40% энергии). Однако при этом сохраняется дифракционный узор с шагом 0.5 в канонических координатах.
Поскольку при малых аберрациях часть энергии из центрального максимума перекачивается в кольца, уменьшается интенсивность в центральном максимуме. Обозначим значение ФРТ в ее максимуме при отсутствии аберраций h0(0), а при наличии аберраций h(0) (рис. 9).
Рисунок 9 - Число Штреля.
Число Штреля (критерий Штреля, Strehl ratio) показывает влияние аберраций на ФРТ: