Смекни!
smekni.com

Діоди (стр. 3 из 7)

Пряма напруга при малих прямих струмах, коли переважає спад напруги на переході діода, з ростом температури зменшується. При більших струмах, коли переважає спад на базі діода, залежність прямої напруги від температури стає позитивною. Точка, у якій відсутня залежність прямого спаду напруги від температури або ця напруга міняє знак, називається точкою інверсії.

У більшості діодів малої й середньої потужності допустимий прямий струм, як правило, не перевищує точки інверсії, а в силових потужних діодів допустимий струм може бути вище цієї точки.


Розділ 2. Загальнівідомості про напівпровідникові

розмикачі струму.

Нано- і субнаносекундні електричні імпульси піковою потужністю від мегават до тераватвикористовуються в цілому ряді областей найсучаснішої техніки, таких як релятивістська надвисокочастотна електроніка, широкополосна радіолокація, дослідження електромагнітної сумісності складних систем, підземна радіолокація, системи живлення лазерів і прискорювачів і т.п. Потужні короткі імпульси використовуються також й у цілому ряді напрямків сучасної експериментальної фізики, наприклад, в області керованого термоядерного синтезу й в інших широкомасштабних фізичних експериментах.

Для генерування потужнихнаносекундных імпульсів є два підходи, що розрізняються за способом нагромадження енергії – нагромадження в ємнісних накопичувачах (малоіндуктивні конденсатори й формуючі лінії) з наступною передачею енергії в навантаження через замикаючий ключ і нагромадження в магнітному полі індуктивного контуру зіструмом; в останньому випадку для передачі енергії в навантаження необхідно здійснити наносекундне розмикання великого струму. Другий метод представляє дуже великий інтерес для потужної імпульсної техніки, оскільки густина накопиченої енергії в індуктивних накопичувачах на півтора – два порядки більша, ніж у ємнісних, істотно менша вартість накопичувачів й, що теж істотно, імпульснанапруга на навантаженні при обриві струму може бути значно вища, ніж напруга на попередніх рівнях формування імпульсу. Однак швидкий обрив більшихструмів, коли потрібно розмикати струми в десятки килоампер при імпульсній напрузі мегавольтного рівня, є значно більшескладнішим, чим швидке замикання.

На стадії лабораторних експериментів ця проблема звичайно вирішується за допомогою плазмових розмикачів знано- і мікросекундним накачуванням, інжекційних тиратронів. Однак для реального застосування, особливо в області промислових технологій, така елементна база не може бути використана - в основному через малий термін служби розмикачів, нестабільності спрацьовування й неможливості їхнього використання в періодично.

Зі звичайних приладів, що випускаються промисловістю, розмикання струму за час порядку 10 нс може бути здійснене в спеціальних типах польових транзисторів. Такий транзистор являє собою, по суті, силову інтегральну схему із сотень тисяч паралельно працюючих мікротранзисторів з розміром 10-15 мкм. Робочанапругаприладу кілька сотень вольт, струм десятки ампер, і для створення імпульсу потужністю, скажемо, 50 МВт розмикач повинен складатися з 104 транзисторів. Через очевидну складність і високу вартість таких систем питання про їхнє створення навіть не обговорювалося.

Найпростішим напівпровідниковим розмикачем струмуєзвичайний

діод. При проходженні через нього струму в провідному напрямкуслабколегованап-база заповнюється електронно-дірковою плазмою внаслідок інжекції електронів і дірок через потенційні бар'єри п+п- і р+п-переходів. Потім через діод пропускається імпульс зворотного струму(мінус на р+-контакті), при цьому дірки із плазми витягаються зовнішнім полем через р+-, а електрони - через п+-контакти. Поки концентрація дірок поблизу р+п-переходу перевищує рівноважну, через діод протікає постійний струм, що обмежується опором навантаження - це фаза високої зворотної провідності (ВЗП).

Потім починає формуватися область об'ємного заряду (ООЗ), границя якої зміщується від р+п-перехода в п-базу, напруга на приладі зростає, а струм у ланцюзі зменшується - це фаза відновлення зворотного опору (ВЗО). Проблема, по суті, полягає в тім, як зробити цей процес досить швидким.

Впершесубнаносекундний напівпровідниковий розмикач був створений ще в 50-х роках минулого століття - це був так званий діод з нагромадженням заряду (ДНЗ). Конструктивно цей прилад надзвичайно простий: у пластині кремнію п-типупровідності, завдяки дифузії боруз поверхні, створюється р+п-переход і базова область із різким градієнтом концентрації, тобто із сильним вбудованим електричним полем. При протіканні прямого струму інжектовані цим переходом дірки при малому рівні інжекції гальмуються вбудованим полем поблизу інжектора. Потім через діод пропускається швидко наростаючий імпульс зворотного струму, накопичені дірки майже повністю виводяться на стадії високої зворотної провідності, після чого струм через діод різко, за

, обривається, переходячи на підключене паралельно діоду навантаження. ДНЗ, безумовно, гранично простий розмикач із дуже гарною швидкодією, але напруга лавинного пробою такогор+п-переходуз високолегованою базою лежить у межах 10-50 В, а робочий струмстановить сотні міліамперів, чого недостатньо для створення генераторів потужних високовольтних імпульсів.

Загалом кажучи, самий звичайний потужний високовольтний напівпровідниковий діод теж є розмикачемструму при перемиканні із прямого на зворотний струм, причому розмикає потужність, що для одиничного приладу може бути дуже великою, порядку мегавата, але у звичайних умовах тривалість процесу розмикання лежить не в нано-, а в мікросекундному діапазоні. Фізика цього процесу в умовах високої густини зворотного струму була детально розглянута в роботах фізиків ще в 1967 р., і хоча нагромадження електронно-діркової плазми в п-базер+пп+-структури при прямому струмі розраховувалося без врахування всіх нелінійних ефектів, а процес відновленняр+п-переходу при протіканні великого зворотногоструму розраховувався з рядом нереальних наближень (сталість у часі зворотного струму, незалежність рухливості носіїв від поля й др.), основні фізичні особливості процесу були визначені дуже чітко[3,4]. Насамперед, було показано, що спад до рівноважного значення концентрації носіїву блокуючогор+п-переходу й початок формування там області об'ємного заряду не приводить до різкого спаду зворотнього струму, якщо на границіООЗ є область, заповнена електронно-дірковою плазмою; характер спаду зворотного струму контролюється процесами "розсмоктування" плазми саме в цій області. Розрахункова форма розподілу плазми при високому рівні інжекції в п-базекремнієвоїр+пп+-структури при протіканні прямого струму

і потім зворотного струму
при співвідношенні
показано. Видно, що плазмовий "резервуар" на границіООЗ (ліва частина структури) існує тривалий час, визначаючи повільний спад зворотного струму й затягуючи процес вимикання. Несиметричність розподілу плазми при протіканні прямого струму й більша швидкість процесу відновленняв лівої границі, в бік якої витягуються зовнішнім полем дірки, пов'язані з тим, що в кремнії рухливість дірок втроє менша рухливості електронів,
.

Показано форму розподілу електронно-діркової плазми в п-базікремнієвоїр+пп+-структури при протіканні постійного прямого струму

(t = 0) і потім при протіканні зворотного струму
. Товщина п-базыd, дорівнює амбіполярній дифузійній довжині
, де Dn- коефіцієнт амбвполярної дифузії, τ час життя носіїв у п-базі при високому рівні інжекції; п— середня концентрація плазми.

Схематичне зображення розподілу носіїв й утворенняплазмових фронтів у п-базіз товщиною Wппри протіканні великого зворотного струму

у р+пп+-структурі наведено нам на рис. 2.2. ООЗ - область об'ємного заряду. Нам показана також спрощена картина рухуплазмових фронтів при протіканні зворотного струму після появи ООЗ. Фронти тут вважаються різкими, а концентрація плазми - постійною по координаті. Звичайно середня концентрація пплазми досить велика(1016 -1017 см-3 і час релаксації порушення нейтральності в ній малий (10-12 с), тому процеси виносу дірок вліво й електронів вправо жорстко взаємозалежні. Було показано, що в цих умовах швидкість руху лівої границі описується формулою 2.1:

(2.1).

А лівої формулою 2.2:

(2.2)

і в кремнієвому діоді, де

, ліва границярухається втроє швидше. Якщо щільність зворотного струму
, де
- концентрація рівноважних електронів у п-базе, а
- їхня насичена швидкість, то поле в ООЗ праворуч і ліворуч контролюється зарядом рухомих носіїв, тобто залежить від щільності струму.