Рис.5
Пряма утворює з віссю x кут
2. Нехай
У цьому випадку
Звідки
Результуючий рух – це гармонічне коливання вздовж прямої
3. Нехай
Це рівняння еліпса, осі якого збігаються з осями координат, а його півосі дорівнюють відповідним амплітудам (рис. 7). Якщо
Рис.6
Рис.7
Два окремі випадки
У випадку, коли циклічні частоти взаємно перпендикулярних коливань, що додаються, різні, то замкнута траєкторія результуючого коливання досить складна.
Замкнуті траєкторії, які рисуються одночасно коливальною точкою у взаємно перпендикулярних напрямках, називаються фігурами Ліссажу. Форма цих кривих залежить від співвідношення амплітуд, частот і різниці фаз коливань, які додаються.
На рис. 8 показана одна із найпростіших траєкторій, одержаних при додаванні взаємно перпендикулярних коливань з відношенням циклічних частот 1:2 і різниці фаз
Рис. 8
Якщо відношення частот
Рис. 9
Чим ближче до одиниці буде відношення частот
Рис. 10
3. Диференціальне рівняння вільних затухаючих коливань і його розв’язування
Розглянемо вільні затухаючі коливання, амплітуда яких внаслідок втрат енергії реальною коливальною системою зменшується з часом. Найпростішим механізмом зменшення енергії коливань є її перетворення в теплоту внаслідок тертя в механічних коливальних системах, а також омічних втрат і випромінювання електромагнітної енергії в електричних коливальних системах.
Закон затухання коливань визначається властивостями коливальних систем. Як правило розглядають лінійні системи – ідеалізовані реальні системи, у яких параметри, які визначають фізичні властивості системи, у ході процесу не змінюються. Лінійними системами є, наприклад, пружинний маятник при малих деформаціях пружини (в межах дії закону Гука), коливальний контур, індуктивність, ємність і опір якого не залежать ні від струму в контурі, ні від напруги. Різні за своєю природою лінійні системи описуються ідентичними лінійними диференціальними рівняннями, які дозволяє підходити до вивчення коливань різної фізичної природи з єдиної точки зору.
Диференціальне рівняння вільних затухаючих коливань лінійної системи задається у вигляді
де x – коливна величина, яка описує той або інший фізичний процес,
Щоб знайти розв’язок рівняння (29), слід фізичну величину х виразити через нову змінну z відповідно до рівняння
де z = z (t). Після підстановки першої і другої похідних від рівності (30) в рівняння (29) одержимо
Розв’язок рівняння (31) залежить від знака коефіцієнта
Тоді одержимо рівняння типу
де
Розв’язком рівняння (32) є рівняння типу (9) першої теми:
Після підстановки (34) у (30) для випадку малих затухань
де
Залежність (35) показана на рис. 11 суцільною лінією, а амплітуда коливань — пунктирними лініями.
Проміжок часу
Затухання порушує періодичність коливань, тому затухаючі коливання не є періодичними, а тому до них поняття періоду або частоти незастосовне.
Однак якщо затухання мале, то можна умовно користуватися поняттям періоду як проміжку часу між двома наступними максимумами (або мінімумами) коливної фізичної величини (рис. 11).
Період затухаючих коливань з урахуванням формули (33) дорівнює
Рис. 11
Якщо Α (t) і Α (t + T) – амплітуди двох послідовних коливань, які відповідають моментам часу, що відрізняються на один період, то їх відношення
називається декрементом затухання, а його логарифм
називається логарифмічним декрементом затухання; N — число коливань,
які виконує коливна система за час зменшення амплітуди в е разів.
Для характеристики втрат енергії коливальною системою з часом, користуються поняттям добротності
де W ─ повна енергія системи; ΔW(T) ─ середні втрати енергії системою за час в один період (t=T).
Повна енергія коливної системи в момент часу tдорівнює
Енергія коливної системи через час в один період
Втрати енергії системою за час в один період дорівнюють
Добротність коливної системи одержимо, поділивши (39) на (41) і помноживши одержану величину на 2
У виразі (42) враховано, що відношення
У випадку, коли