Смекни!
smekni.com

Дрейфовые транзисторы их параметры, преимущества и недостатки (стр. 1 из 6)

Факультет электронной техники

Кафедра микроэлектроники

КУРСОВАЯ РАБОТА

на тему: “Дрейфовые транзисторы их параметры, преимущества и недостатки”


Содержание

1. Определение, структура и особенности дрейфового транзистора

2. Физические процессы в базе дрейфового транзистора

2.1 Процессы в базе при низком уровне инжекции

2.2 Процессы в базе при больших плотностях тока

3. Влияние неравномерного распределения примесей в базе на параметры дрейфового транзистора

Список использованных источников литературы.


1. Определение, структура и особенности дрейфового транзистора

Основные характеристики транзистора определяются в первую очередь процессами, происходящими в базе. В зависимости от распределения примесей в базе может существовать или отсутствовать электрическое поле. Если при отсутствии токов в базе существует электрическое поле, которое способствует движению неосновных носителей заряда от эмиттера к коллектору, то транзистор называют дрейфовым, если же поле в базе отсутствует – бездрейфовым. По принципу действия дрейфовый и бездрейфовый транзисторы одинаковы. Отличаются они только механизмом переноса носителей через базовую область. В дрейфовом транзисторе скорость носителей в базе увеличивается вследствие действия дрейфового поля, что приводит к различиям в численных значениях параметров двух типов транзисторов.

Рассмотрим типичную структуру дрейфового транзистора, создаваемого методом двойной диффузии (рис.1.1).[1]

Структура дрейфового транзистора.

Рис. 1.1.

Пусть в качестве исходного материала используется полупроводник р-типа с концентрацией примеси Na0. С поверхности полупроводника происходит диффузия акцепторной и донорной примесей, причем на поверхности Na>Nd. Будем считать, что диффузия примесей происходит по простому закону [1].


Существенное влияние на результирующее распределение примесей оказывает то, что коэффициент диффузии акцепторной примеси значительно отличается от коэффициента диффузии донорной примеси. Поэтому, например, в германии концентрация акцепторной примеси быстрее убывает с расстоянием вглубь полупроводника, чем концентрация донорной (рис.1.2,а). Для получения более ясной картины построим на основе рис.1.2,а зависимость разности Na-Nd от x (рис. 1.2,б).

Распределение примесей в дрейфовом транзисторе.

Рис.1.2.

Теперь видны три области в полупроводнике: р-типа (x<0, Na-Nd>0), п-типа (W>x>0, Na-Nd<0), р-типа (x>W, Na-Nd>0). Первая область может использоваться в качестве эмиттера транзистора, вторая — в качестве базы, третья — коллектора. Обычно режим диффузии выбирается так, что N>>Ndб,ср>> N (Ndб,ср — средняя концентрация примесей в базе). Поэтому приближенно распределение примесей можно изобразить в виде рис. 1.2,в.

Вследствие неравномерного распределения примесей в базе (рис. 1.2,г) существуют встречные диффузионные потоки электронов и дырок, которые приводят к образованию электрического поля в базе. Образование электрического поля можно объяснить следующим образом. Концентрация атомов донорной примеси в базе транзистора p-n-p-типа велика у эмиттера и мала у коллектора. Так же распределяется и концентрация свободных электронов, поскольку свободные электроны создаются вследствие ионизации атомов донорной примеси. Часть свободных электронов от эмиттера уходит к той части области базы, которая расположена у коллекторного перехода. Это перемещение создает избыточный положительный заряд ионов у эмиттерного и избыточный отрицательный заряд электронов у коллекторного перехода. Таким образом, создаются электрическое поле и наклон энергетических зон в базовой области (рис. 1.3). Электрическое поле в базе направлено от эмиттера к коллектору и, следовательно, способствует движению дырок в этом направлении.[2]

Рис.1.3. Дрейфовый транзистор

Особенности дрейфовых транзисторов. Как известно[3], диффузионная технология позволяет получить очень тонкую базу, что само по себе (даже без учета распределения примесей) приводит к ряду важных следствий. А именно при прочих равных условиях существенно уменьшается время диффузии tD и увеличивается коэффициент передачи β, поскольку эти параметра зависят от квадрата толщины базы[3]. Толщина базы у дрейфовых транзисторов в 5—10 раз меньше, чем у диффузионных, а потому время диффузии tD и постоянная времени τα, оказывается меньше в десятки раз; соответственно увеличивается граничная частота fα. Коэффициент передачи β по тем же соображениям должен был бы доходить до 1 000 и больше. На самом деле он значительно меньше и обычно не превышает 100—200. Это объясняется тем, что величины α и β зависят не только от толщины базы, но также от времени жизни и коэффициента инжекции. В связи с повышенной концентрацией примесей вблизи эмиттера, а значит, малым удельным сопротивлением время жизни в базе дрейфового транзистора значительно меньше, чем у диффузионных транзисторов, а коэффициент инжекции более заметно отличается от единицы [3].

Теперь учтем неравномерное распределение примесей в базе на примере р-п-р транзистора (рис. 1.4, где LД — длина диффузии доноров) и покажем те следствия, к которым приводит такая неравномерность.

Рис.1.4. Распределение примесей в базе дрейфового транзистора.

Прежде всего, очевидно, что слой базы, прилегающий к коллекторному переходу, является почти собственным полупроводником, так как здесь продиффундировавшие донорные атомы в значительной мере компенсируют акцепторные атомы исходного кристалла. Следовательно, удельное сопротивление этого слоя базы велико и коллекторный переход оказывается довольно широким. Соответственно емкость Ск получается значительно (почти на порядок) меньшей, чем у диффузионных транзисторов, и составляет несколько пикофарад. По вполне понятным причинам коллекторный переход является плавным, а не ступенчатым, и потому емкость Ск описывается формулой [3].

(1.1)

где l –ширина перехода.

По мере удаления от коллектора в глубь базы концентрация доноров растет, а удельное сопротивление уменьшается. Результирующее сопротивление базы можно рассматривать как результат параллельного соединения отдельных слоев базы, имеющих равную удельную проводимость. Поскольку неоднородность базы является основой дрейфового механизма транзистора, концентрацию Nd(0) делают весьма большой; Nd(0) >> Na. к, где Na. к — концентрация акцепторов в исходной пластинке (рис.1.4). Очевидно, что сопротивление rб определяется в основном тем участком базы, который прилегает к эмиттерному переходу и имеет наибольшую удельную проводимость. Поэтому, несмотря на значительно меньшую толщину базы W, величина rб у дрейфовых транзисторов примерно такая же, как у диффузионных, и даже меньше.

Эмиттерный переход у дрейфовых транзисторов, как правило, ступенчатый. Поскольку граничная концентрация доноров Nd(0) велика, концентрация акцепторов в эмиттере должна быть еще большей и эмиттерный переход получается очень узким. В результате при подаче на эмиттер отрицательного запирающего напряжения этот переход легко пробивается. Обычно пробой носит полевой характер [3] и происходит при очень небольшом напряжении (1—2 в). Пробой эмиттера оказывает значительное влияние на работу многих импульсных схем, в которых запирание триода является необходимым элементом рабочего цикла. Эта важная специфика дрейфовых транзисторов не является, однако, препятствием для применения их в ключевых схемах, так как пробой перехода при ограниченном токе является обратимым явлением (как в опорном диоде) и не представляет никакой опасности. Инжекция в режиме пробоя, как известно, отсутствует и, следовательно, по коллекторной цепи триод остается запертым.

Меньшая ширина эмиттерного перехода у дрейфовых триодов при прочих равных условиях означает большую величину барьерной емкости СЭ. Это обстоятельство вместе с гораздо более высокой частотой ƒα делает существенным влияние емкости СЭ на коэффициент инжекции [3]. Иначе говоря, частотные свойства дрейфовых транзисторов могут ограничиваться не временем диффузии, а постоянной времени rЭСЭ. Для того чтобы уменьшить влияние барьерной емкости СЭ, часто используют дрейфовые транзисторы при большем токе эмиттера, например 4—5 ма вместо 1 ма. Тогда сопротивление rЭ уменьшается и постоянная времени rЭСЭ оказывается достаточно малой. В сущности, критерием при увеличении тока является условие СЭ < СЭ. Д, где СЭ. Д - диффузионная емкость эмиттера [3].

(1.2)

где tD–среднее время диффузии(пролета носителей через базу).

Заметим еще, что коллекторный слой у дрейфовых транзисторов имеет сравнительно большое сопротивление. Это объясняется, во-первых, значительной толщиной коллектора (она близка в толщине исходной пластинки) и, во-вторых, тем, что исходная пластинка имеет довольно большое удельное сопротивление (ρ≥ омּсм}. Последнее обстоятельство обусловлено тем, что в противном случае нельзя было бы обеспечить существенную разницу в концентрациях NБ(0) и NБ (W), а это в значительной степени лишило бы дрейфовый транзистор тех его особенностей, которые связаны с наличием собственного поля и базе. Сопротивление коллекторного слоя особенно важно учитывать в ключевых схемах, построенных на дрейфовых транзисторах.