В 20-30-е гг. В.Гейзенберг и Л. де Бройль заложили основы новой теории — квантовой механики. В 1924г. в работе «Свет и материя»
Л. де Бройль высказал предположение об универсальности корпускулярно-волнового дуализма, согласно которому все микрообъекты могут вести себя и как волны, и как частицы. На основе уже установленной дуальной (корпускулярной и волновой) природы света он высказал идею о волновых свойствах любых материальных частиц. Так, например, электрон ведет себя как частица, когда движется в электромагнитном поле, и как волна, когда проходит сквозь кристалл. Эта идея получила название корпускулярно-волнового дуализма. Принцип корпускулярно-волнового дуализма устанавливает единство дискретности и непрерывности материи.
В 1926г. Э.Шредингер на основе идей Л. де Бройля построил волновую механику. По его мнению, квантовые процессы — это волновые процессы, поэтому классический образ материальной точки, занимающей определенное место в пространстве, адекватен только макропроцессам и совершенно неверен для микромира. В микромире частица существует одновременно и как волна, и как корпускула. В квантовой механике электрон можно представить как волну, длина которой зависит от ее скорости. Уравнение Э.Шредингера описывает движение микрочастиц в силовых полях и учитывает их волновые свойства.
На основе этих представлений в 1927г. был сформулирован принцип дополнительности, по которому волновые и корпускулярные описания процессов в микромире не исключают, а взаимно дополняют друг друга, и только в единстве дают полное описание. При точном измерении одной из дополнительных величин другая претерпевает неконтролируемое изменение. Понятия частицы и волны не только дополняют друг друга, но и в то же время противоречат друг другу. Они являются дополняющими картинами происходящего. Утверждение корпускулярно-волнового дуализма стало основой квантовой физики.
В 1927г. немецкий физик В.Гейзенберг пришел к выводу о невозможности одновременного, точного измерения координаты частицы и ее импульса, зависящего от скорости, эти величины мы можем определить только с определенной степенью вероятности. В классической физике предполагается, что координаты движущегося объекта можно определить с абсолютной точностью. Квантовая механика существенно ограничивает эту возможность. В.Гейзенберг в работе «Физика атомного ядра» изложил свои идеи.
Вывод В. Гейзенберга получил название принципа соотношения неопределенностей, который лежит в основе физической интерпретации квантовой механики. Его суть в следующем: невозможно одновременно иметь точные значения разных физических характеристик микрочастицы — координаты и импульса. Если мы получаем точное значение одной величины, то другая остается полностью неопределенной, существуют принципиальные ограничения на измерение физических величин, характеризующих поведение микрообъекте. Таким образом, заключил В.Гейзенберг, реальность различается в зависимости от того, наблюдаем мы ее или нет. «Квантовая теория уже не допускает вполне объективного описания природы», — писал он. Измерительный прибор влияет на результаты измерения, т.е. в научном эксперименте влияние человека оказывается неустранимым. В ситуации эксперимента мы сталкиваемся с субъект-объектным единством измерительного прибора и изучаемой реальности.
Важно отметить, что это обстоятельство не связано с несовершенством измерительных приборов, а является следствием объективных, корпускулярно-волновых свойств микрообъектов. Как утверждал физик М. Борн, волны и частицы — это только «проекции» физической реальности на экспериментальную ситуацию.
Два фундаментальных принципа квантовой физики — принцип соотношения неопределенностей и принцип дополнительности — указывают на то, что наука отказывается от описания только динамических закономерностей. Законы квантовой физики — статистические. Как пишет В.Гейзенберг, «в экспериментах с атомными процессами мы имеем дело с вещами и фактами, которые столь же реальны, сколь реальны любые явления повседневной жизни. Но атомы или элементарные частицы реальны не в такой степени. Они образуют скорее мир тенденций или возможностей, чем мир вещей и фактов». В дальнейшем квантовая теория стала базой для ядерной физики, а в 1928г. П.Дирак заложил основы релятивистской квантовой механики.
4. Современные представления об элементарных частицах. Структура микромира
Структурность и системность наряду с пространством, временем, движением являются неотъемлемыми свойствами материи. Современное миропонимание предполагает упорядоченность и организованность мира, а проблема самоорганизации бытия является одной из самых важных в науке и философии. Бытие представляет собой сложноорганизованную иерархию систем, все элементы которой находятся в закономерной связи друг с другом, кажущаяся неоформленность изменений в каком-то одном отношении оказывается упорядоченностью в другом. Именно это обстоятельство выражается в понятии системности.
Понятия «система» существует несколько десятков определений, однако классическим признано определение, данное основоположником теории систем Л.Берталанфи: система - это комплекс взаимодействующих элементов. Ключевым понятием в этом определении является понятие «элемент». Под элементом понимается - неразложимый компонент системы при определенном, заданном способе ее рассмотрения. Если меняется угол зрения, то явления или события, рассматриваемые в качестве элемента системы, сами могут становиться системами. Например, элементами системы «газ» выступают молекулы газа. Однако сами молекулы в свою очередь могут рассматриваться в качестве систем, элементами которых являются атомы.
Атом - тоже система, однако принципиально другого уровня, чем газ и т.д. Элементами системы признаются только те предметы, явления или процессы, которые участвуют в формировании ее свойств. Комплекс элементов системы может складываться в подсистемы разного уровня, которые выполняют частные программы и представляют собой промежуточные звенья между элементами и системой.
По характеру связей между элементами все системы делятся на суммативные и целостные. В суммативных системах связь между элементами выражена слабо, они автономны по отношению друг к другу и системе в целом. Качество такого образования равно сумме качеств составляющих его элементов. Примерами суммативной системы являются груда камней, куча песка и т.п. Несмотря на высокую степень автономности элементов, образования, аналогичные груде камней, все же рассматриваются как системы, поскольку могут сохранять устойчивость длительное время и существовать в качестве самостоятельных совокупностей. Кроме того, существует предел количественных изменений таких систем, превышение которого приводит к изменению их качества. У суммативных систем есть собственная программа существования, которая выражается в структурности.
В целостных системах четко выражена зависимость их возникновения и функционирования от составляющих элементов и наоборот. Каждый элемент такой системы в своем возникновении, развитии и функционировании зависит от всей целостности, и, в свою очередь, система зависит от каждого из своих элементов. Внутренние связи в целостностях стабильнее внешних, а качество системы не сводится к сумме составляющих ее элементов. Примером целостной системы является живой организм или общество. Под действием определенных факторов суммативные системы могут преобразовываться в целостные и наоборот.
Кроме типологии систем в зависимости от характера связи между элементами системы различают по типу их взаимодействия с окружающей средой. В этом случае выделяют открытые и закрытые (замкнутые) системы. В закрытых системах не происходит обмена энергией и веществом с внешним миром. Такие системы стремятся к равновесному состоянию, максимальная степень которого - неупорядоченность и хаос. Открытые системы, напротив, обмениваются энергией и веществом с внешним миром. В таких системах при определенных условиях из хаоса могут самопроизвольно возникать новые упорядоченные структуры, а система в целом повышает уровень своей структурной организации.
Структурность выражается в упорядоченности существования материи и ее конкретных форм и предполагает внутреннюю расчлененность материи. Структура определяется как совокупность устойчивых, закономерных связей и отношений между элементами системы, обеспечивающих сохранение ее основных свойств. Современные представления о структурированности Вселенной касаются мега-, макро- и микромира; и Метагалактика, и известный нам макромир, и микрочастица структурированы. Переход от одной области действительности к другой связан с изменением числа факторов, обеспечивающих упорядоченность, и трансформацией самих структур. Единство упорядоченности - системности, и внутренней расчлененности - структурности, определяет существование мира как системы систем: систем объектов, систем свойств или отношений и т.п.
Элементами структуры микромира выступают микрочастицы. На данный момент известно более 350 элементарных частиц, различающихся массой, зарядом, спином, временем жизни и еще рядом физических характеристик.
Время жизни элементарной частицы определяет ее стабильность или нестабильность. По времени жизни частицы делятся на стабильные, квазистабильные и нестабильные. Большинство элементарных частиц нестабильно. Нестабильные частицы живут несколько микросекунд, стабильные не распадаются длительное время. Нестабильные частицы распадаются в результате сильного и слабого взаимодействия. Стабильными частицами считаются фотон, нейтрино, нейтрон, протон и электрон. При этом нейтрон стабилен только в ядре, в свободном состоянии он также распадается. Сейчас высказываются предположения о возможной нестабильности протона. Квазистабильные частицы распадаются в результате электромагнитного и слабого взаимодействия, иначе их называют резонансными. Резонансные частицы были открыты в начале 60-х гг. XXв.. Время жизни резонансов - порядка 10—22 с.