Смекни!
smekni.com

Закони збереження та динаміка обертального руху (стр. 2 из 4)

Таким чином тіло масою m на висоті h над поверхнею Землі має потенціальну енергію:

.

Не важко обчислити потенціальну енергію деформованої пружини. Сила пружності

.

Сила, що стискає пружину протилежна силі пружності

.

Роботу цієї змінної сили на шляху x знайдемо шляхом інтегрування:

.

Таким чином, стиснена пружина або розтягнута має запас потенціальної енергії:

. (8)

Дослід показує, що якщо в замкненій системі не відбувається перетворення механічної енергії в інші види енергії, то загальна кількість механічної енергії системи залишається сталою

(9)

В цьому полягає закон збереження енергії, який формулюється ще так: енергія в замкненій системі може перетворюватись із одного виду в другі, але повна її величина залишається сталою.

Робота являється мірою передачі руху від одного тіло до другого, а енергія є єдина кількісна міра різних форм руху матерії. Рух матерії тільки перетворюється з одної форми в іншу і ніколи не зникає.

В фізиці механічна система, при русі якої сума кінетичної та потенціальної енергії залишається сталою, називається консервативною системою. В земних умовах консервативними можна приблизно вважати ті системи, в яких можна знехтувати силами тертя.

Відмітимо, що системи, в яких повна механічна енергія при русі безперервно зменшується (розсіюється), переходить в другі, немеханічні, форми енергії називаються диссипативними (або неконсервативними) системами.

Всі реальні системи в земних умовах являються диссициативними. Закон збереження енергії справедливий і для диссипативних систем, якщо під певною енергією розуміють суму всіх видів енергій системи.

Відмітимо, що закон збереження енергії не справедливий для інерціальних систем, поскільки сили інерції всюду проявляються як зовнішні сили.

Елементи кінематики обертового руху

Абсолютно твердим тілом називається таке тіло, віддаль між любими двома точками якого залишається постійна незалежно від наявності або відсутності сил, діючих на тіло. Такі тіла надалі будуть називатися просто твердими.

Найбільш просто задачі механіки розв’язуються для матеріальних точок. Тому в цих випадках, коли не можна знехтувати формою та розмірами тіла, його в думці розбивають на невеликі елементи так, щоб кожний елемент можна було розглядати як матеріальну точку.

Таким чином, задача про рух твердого тіла зводиться до задачі про рух великого числа матеріальних точок (системи матеріальних точок).

Обертовим рухом твердого тіла називають такий рух при якому траєкторії всіх точок тіла являються колами, центри яких лежать на одній прямій, що називається віссю обертання.

Кінетично обертовий рух записується наступним співвідношенням:

, (10)

де w - кутова швидкість.

Кутова швидкість - це вектор, напрямлений вздовж стін обертання в ту сторону, в яку рухався б буравчик, ручка якого обертається в напрямку руху точки по колу.

Якщо w = const, то обертання рівномірне

кутове прискорення

(11)

зв’язок між лінійною і кутовою швидкістю

(12)

зв’язок між лінійним (точніше, тангенціальним) прискоренням і кутовим прискоренням:

(13)

Проінтегрувавши вирази (10) і (11), одержимо слідуючі формули:

(14)

(15)

(16)

Висновки

Для замкнутої системи геометрична сума імпульсів тіл під час будь-яких взаємодій залишається сталою.

Робота характеризує дію сили, пов’язану з переміщенням тіла.

Якщо на тіло діє кілька сил загальна робота дорівнює алгебраїчній сумі робіт, що виконується кожною силою. Робота в різних інерціальних системах відліку різна, бо різне переміщення.

Потужність характеризує швидкість виконання роботи.

Енергія характеризує механічний стан тіла (системи тіл).

Кінетична енергія характеризує стан руху тіла.

Потенціальна енергія характеризує взаємодію тіл або частинок і залежить від їх взаємного розміщення.

Для будь-якої системи тіл, у якій діють тільки внутрішні потенціальні сили, механічна енергія системи залишається сталою.

Для замкнутої системи геометрична сума імпульсів тіл під час будь-яких взаємодій залишається сталою.

Тема 2. Динаміка обертального руху

Навчальний потік інженери

Час 2 години

Місце 235 кл

Навчальна та виховна мета

_________________________________________

_____________________________________________________________

Навчальні питання і розподіл часу

Вступ_____________________________________ -… хвил.

Момент сили. Кінетична енергія обертального

руху тіла. -… хвил.

Момент інерції. Рівняння динаміки обертального

Руху. -… хвил.

Момент імпульса. Закон збереження моменту

імпульса. -… хвил.

4. Поняття про гіроскопічний ефект. -… хвил.

Висновки та відповіді на питання -… хвил.

Навчально-матеріальне забезпечення

Гіроскоп.

Лектор -2000.

Організаційно-методичні вказівки до проведення лекції

Перевіряється наявність курсантів та оголошується тема, мета та питання, що вивчаються, дається література.

За допомогою "Лектора-2000" пояснити та визначити формулу кінетичної енергії обертального руху твердого тіла.

Пояснити, що в обертальному русі твердого тіла мірою його інертних властивостей є момент інерції. Визначити рівняння динаміки обертального руху, пояснити за допомогою "Лектора-2000" та сформулювати закон збереження імпульсу.

Гіроскопічний ефект пояснити за допомогою гіроскопу та "Лектора-2000". Звернути увагу на його застосування.

Вступ

При порівнянні законів обертального та поступального рухів спостерігається аналогія між ними, тільки в обертальному русі замість сили виступає її момент, роль маси відіграє момент інерції. В рівняння динаміки обертального руху твердого тіла відносно нерухомої осі входить його кутове прискорення. При обертальному русі аналогом імпульсу являється момент імпульсу.

Закони збереження моменту імпульсу - фундаментальний закон природи. Він пов’язаний з певною властивістю симетрії простору - його ізотропністю, тобто з інваріантністю фізичних законів відносно вибору напрямку осей координат системи відліку.

Момент сили. кінетична енергія обертового тіла

Нехай тіло обертається під дією сили F. Довжина перпендикуляру, опущеного з вісі обертання на лінію дії сили називається плечем сили. Добуток сили на плече називається моментом сили:

(1)

Рис.1

Будь-який елемент маси обертового тіла має лінійну швидкість

і отже, він має кінетичну енергію

.

Використавши співвідношення:

Знаходимо

,

але

являє собою момент інерції елемента маси. Тому маємо:

(2)

Кінетична енергія всього тіла буде дорівнювати сумі кінетичних енергій всіх елементів мас:

.

Величина

визначає собою момент інерції всього тіла відносно даної вісі обертання. Тому кінетична енергія обертового тіла рівна:

. (3)

Якщо тіло одночасно з обертанням рухається поступально, то його повна кінетична енергія рівна:

, (4)

де n - швидкість руху центрам мас тіла.

Момент інерції тіла відносно даної вісі характеризує інерційні властивості тіла при обертовому рухові навколо даної вісі.

Момент інерції. рівняння динаміки обертового руху

При порівнянні законів поступового і обертального руху між ними існує аналогія. Так формули кінетичної енергії мають однаковий вигляд, але при обертанні тіл роль маси відіграє момент інерції. Яка ж величина грає роль сили?