Смекни!
smekni.com

Зонная теория твердых тел (стр. 2 из 8)


Рис.11

Волновые функции S и P – электронов образуют одну совершенно пустую гибридную SP – зону и одну заполненную гибридную SP – зону. Заполненная и пустая зоны разделены довольно значительным энергетическим интервалом или зоной запрещенных значений энергии. Для изоляторов типичное значение ширины запрещенной зоны ~ 5 эв и больше. Ширина запрещенной зоны для полупроводников (германия 0,67 эв, кремния 1,12 эв) находится в пределах 0,1 ¸ 3 эв.

Полупроводники и изоляторы отличаются друг от друга только шириной запрещенной зоны.

Рис.12


§ Теорема Блоха

Теорема Блоха утверждает, что собственные функции волнового уравнения с периодическим потенциалом имеют вид произведения функции плоской волны

На функцию

, которая является периодической функцией в кристаллической решетке:

Индекс

в
указывает, что эта функция зависит от волнового вектора
.

Волновую функцию

называют функцией Блоха. Решения уравнения Шредингера такого вида состоят из бегущих волн, из таких решений можно составить волновой пакет, который будет представлять электрон, свободно распространяющийся в периодическом потенциальном поле, созданном ионными остовами.


Рис.13

Форма волнового пакета при t=0 для дебройлевских волн

. Амплитуда
указана штриховой линией, волна – сплошной. Движение монохроматической плоской волны вдоль оси Х можно описать функцией

(1)

Скорость распространения волны может быть найдена как скорость перемещения постоянной фазы.

(2)

Если время изменится на величину ∆t, то для того, чтобы соблюдалось условие (2), координата должна измениться на величину ∆х, которая может быть найдена из равенства

т.е.

(3)

Отсюда скорость распространения постоянной фазы, получившей название фазовой скорости:

(4)

Фазовая скорость фотонов (m0 = 0) равна скорости света

(5)

,
(6)

Фазовая скорость электрона, движущегося со скоростью V, можно написать

(7)

, (7)

т.е. она становится больше скорости света, поскольку V< с. Это говорит о том, что фазовая скорость не может соответствовать движению частицы или же переносу какой-либо энергии.

Реальный процесс не может быть чисто монохроматическим (k = const). Он всегда обладает определенной шириной, т.е. состоит из набора волн, обладающих близкими волновыми числами, а вместе с тем и частотами.

С помощью набора волн можно построить волновой пакет, амплитуда которого отлична от нуля лишь в небольшой области пространства, которую связывают с местоположением частицы. Максимум амплитуды волнового пакета распространятся со скоростью, которая получила название групповой скорости.

Амплитуда В волнового пакета

где A – амплитуда постоянная каждой из этих волн.

В распространяется со скоростью

Для фотонов (m0 = 0)

Для дебройлевских волн

т.е. групповая скорость совпадает со скоростью движения частицы.

В точках

и т.д.

Квадрат амплитуды обращается в нуль.

Область локализации волнового пакета

,

где

- ширина волнового пакета.

где

- время расплывания волнового пакета.

Соотношения неопределенностей Гейзенберга. Чем меньше

, тем шире
. Для монохроматической волны

,

где амплитуда во всем пространстве имеет одно и то же значение, т.е. наложение частицы (одномерный случай) во всем пространстве равновероятно. Это обобщается и на трехмерный случай.

Для нерелятивистского случая (m = m0) время расплывания волнового пакета

если m = 1г,

,то

время расплывания чрезвычайно велико. В случае электрона m0 ~ 10-27г

(размеры атома),

т.е. для описания электрона в атоме мы должны использовать волновое уравнение, т.к. волновой пакет расплывается практически мгновенно.

Волновое уравнение фотона содержит вторую производную по времени, т.к. фотон всегда релятивистская частица.

Движение электрона в кристалле

Закон движения, сравнивая с

где

где m* - эффективная масса, она учитывает совместное действие потенциального поля и внешней силы на электрон в кристалле.

- в зоне проводимости,

в валентной зоне

- в валентной зоне, но в зоне германия и кремния имеются тяжелые и легкие дырки. Эффективные массы всегда выражаются в долях истинной массы m0 = 9·10-28г

и

Эффективная масса – тензорная величина, в различных направлениях она различна, что является следствием анизотропных свойств кристаллов.

Ек – уравнение эллипсоида вращения и описывается двумя значениями масс

и

Энергетический спектр электронов и дырок в координатах Е и K

Е(К) – функция квазиимпульса. Энергия электрона в идеальной решетке есть периодическая функция квазиимпульса.

Импульс электрона

Дырки – квазичастицы с меньшей энергией располагаются у потолка валентной зоны и увеличивают свою энергию, перемещаясь по шкале энергии вглубь валентной зоны. Для дырок и электронов отсчет энергий в противоположных направлениях.