Смекни!
smekni.com

Зонная теория твердых тел (стр. 4 из 8)

то получим:

или, если
,

Например: Li

Валентность – 1,

*r0 – радиус сферы, содержащей один электрон.

Lн – боровский радиус 0,53×10-8 см.

*

безразмерный параметр

Волновой вектор КF = 1,11×108 см-1;

Скорость Ферми VF = 1,29×108 см/с;

Энергия Ферми

.

Температура Ферми

ТF не имеет никакого отношения к температуре электронного газа.

Определим

– число состояний на единичный энергетический интервал, части называемый плотностью состояний при

;

Плотность состояний равна:

Вариант 5 № 2. Число электронов с кинетической энергией от ЕF/2 до ЕF определяется соотношением

По аналогии:

Этот же результат можно получить из

в более простой форме:

С точностью порядка единицы число состояний на единичный энергетический интервал вблизи энергии Ферми равно отношению числа электронов проводимости к энергии Ферми.

Выводы

1. Эффективные массы: германий

кремний

т.е. в валентной зоне германия и кремния имеются тяжелые и легкие дырки. Валентные зоны состоят из трех подзон.

2. Поверхность Ферми есть поверхность постоянной энергии
в
пространстве. Поверхность Ферми при абсолютном нуле
отделяет заполненные электронами состояния от незаполненных состояний. Сфера Ферми. Все состояния с К<КF являются занятыми.

3. Разнообразие свойств твердых тел и есть свидетельство разнообразия квазичастиц.

4. До последнего времени считалось, что электроны похожи друг на друга. Когда хотят подчеркнуть отличие электронов железа от электронов меди, то говорят, что они обладают различными поверхностями Ферми.

На всемирной выставке в Брюсселе здание отдает дань веку физики. Представляет правильную систему связанных между собой сфер, внутри которых выставочные помещения. Каждая из которых (сфера) представляет ион железа, потерявший одни электрон. Это поверхность уровня Ферми.

У каждого металла только своя ему присущая форма поверхности Ферми, она ограничивает область импульсного пространства, занятого электронами проводимости при абсолютном нуле. Это визитные карточки различных металлов.

5. Свойства металлов определяются электронами на поверхности Ферми или вблизи нее.

6. Движение волнового пакета, связанного с волновым вектором

описывается уравнением

Групповая скорость

§ Энергетический спектр энергии для свободных электронов в периодическом поле


На рисунке заштрихованные области запрещенных значений энергии (энергетические щели).

Волновая функция имеет вид:

Энергия

не является теперь непрерывной функцией квазиимпульса
, она непрерывна только в зонах разрешенных энергий и претерпевает разрывы на границах зон Бриллюэна. Энергетические зоны являются следствием периодической структуры кристалла и представляют собою фундаментальные характеристики электронной структуры твердого тела.
– граница зоны, это вектор обратной решетки.


Области значений

, при которых энергия электронов изменяется непрерывно, а на границах претерпевает разрыв, называются зонами Бриллюэна.

Энергетический спектр электронов и дырок в координатах Е – К. В германии и кремнии зона проводимости описывается двумя значениями масс.

§ Механизм электропроводности собственного полупроводника

Содержащую электроны зону с наибольшей энергией, называют валентной зоной. Первую зону с незанятыми энергетическими уровнями называют зоной проводимости, так как электроны в этой зоне участвуют в переносе заряда. В проводниках валентная зона и зона проводимости либо совпадают, либо перекрываются. В изоляторах и полупроводниках эти зоны отделены друг от друга.

Если материал находится не в состоянии основном, а обладает дополнительной энергией – тепловым возбуждением. Эта энергия играет важную роль в свойствах электропроводности.


Проводник в основном состоянии, если отсутствует тепловая энергия т.е. Т = 0. Зависимость вероятности заполнения электронами энергетических уровней при КТ = 0 от энергии e отсчитывается от дна зоны.

для всех значений энергии, соответствующих заполненным уровням.

Энергия, отсчитываемая от дна зоны, при которой величина f(E) скачком изменяется от 1 до 0, называется энергией Ферми eF В данном случае

т.е. работе выхода

При наличии тепловой энергии некоторые электроны возбудятся и перейдут из первоначальных состояний на свободные энергетические уровни. Для электронов с энергией вблизи eF такие переходы более вероятны, так как требуется меньшая энергия возбуждения. Соответственно, и вероятность заполнения состояний уменьшается с ростом их энергии. Если электроны не подчиняются принципу Паули, то их распределение по энергии описывается классическим распределением Максвелла – Больцмана

Распределение, учитывающее принцип Паули, называется распределением Ферми – Дирака