Смекни!
smekni.com

Изучение плоских диэлектрических волноводов для ТЕ поляризации (стр. 2 из 4)

Формулы Френеля.

Пусть А – амплитуда электрического вектора поля падающей волны. Будем считать ее комплексной величиной с фазой , равной постоянной части аргумента волновой функции. Переменная ее часть имеет вид:

Теперь разложим вектор на параллельную и перпендикулярную составляющие:

Компоненты магнитного вектора получаются из соотношения

Отсюда

Граничные условия

и
требуют чтобы на границе тангенциальная составляющие векторов Eи Hбыли непрерывны. Следовательно, нужно потребовать выполнения следующих соотношений

Теперь можно получить важные соотношения (уравнения):

(23)

(24)

(25)

(26)

Решая эти уравнения, получаем уравнения Френеля:

(27)

(28)

(29)

(30)

где

.

Отражательная и пропускательная способность. Угол Брюстера.

Рассмотрим теперь, как энергия поля падающей волны распределяется между двумя вторичными полями.

Интенсивность света при

равна

Количество энергии в первичной волне, которое падает на поверхность раздела за одну секунду равно:

Соответственно для отраженной и преломленной волн:

Если

и
разделить на
получатся отражательная и пропускательная способности соответственно.

Если же вектор E образует с плоскостью падения угол

, то

тогда

Замечаем, что в случае

.

Угол

в данном случае называется углом Брюстера. И если свет падает под углом Брюстера, то электрический вектор отраженной волны не имеет составляющей в плоскости падения.

Полное внутренние отражение.

При распространении света из более плотной оптической среды в менее. Т.е. когда

При условии, что угол падения превосходит критическое значение

определяющееся выражением

.

Если

, то
, так что направление распространения света касательно к поверхности первого раздела. Если
превышает 90, свет не входит во вторую среду. Весь свет отражается обратно в первую среду, и мы говорим о полном внутреннем отражении.

Но электромагнитное поле не равно нулю во второй среде, отсутствует лишь поток энергии через границу. Если в фазовом множителе прошедшей волны положим:

и

то получим

Это выражение описывает неоднородную волну, которая распространяется вдоль поверхности раздела в плоскости падения и меняется экспоненциально с изменением расстояния от этой поверхности.

Зависимость амплитуды электрического вектора от угла падения, для двух случаев. Первый случай: падение из более плотной среды в менее плотную; второй случай: падение из менее плотной среды в более плотную.

Для случая n=1,6. Видно, что при 38 градусах (критический угол) энергия не проходит во вторую среду.

Для случая n=0.625. Отчетливо виден угол Брюстера(62 градуса). Из графика видно, что отсутствует R пар. Электрический вектор отраженной волны не имеет составляющей в плоскости падения.

Уравнения, описывающие распространение электромагнитных

волн в плоском оптическом волноводе.

В данной работе рассматривается ТЕ поляризацию. Ее отличие от ТМ заключается в том, что в ТЕ волнах электрический вектор лежит в плоскости падения.

В пассивных оптических волноводах отсутствуют сторонние токи и заряды, и уравнения Максвелла, как говорилось в начале, имеют нулевую правую часть. Считая, что электромагнитное поле изменяется во времени по гармоническому закону, т.е.

,
.

Уравнения Максвелла для комплексных амплитуд можно записать так:

(31)

(32)

и
абсолютные диэлектрические и магнитные проницаемости среды.

Рассмотрим плоский волновод.

Этот волновод образован плоской диэлектрической пленкой, она однородна в направлениях X и Y. В направлении Z волновод неоднороден. Если рассматривать ТЕ волны, то

.

Положим для определенности, что волна распространяется вдоль оси Y.

Получили соотношения, выражающие связь между E и H компонент:

В результате подстановки этих уравнений в

можно получить волновое уравнение для электрической компоненты поля:

(33). Получили уравнение описывающее распространение волн в оптическом волноводе. Это уравнение с разделяющимися переменными и его решение следует искать в виде произведения двух функций, одна из которых зависит только от y, а вторая только от z. Распределение амплитуды поля по координате x предполагается равномерным.

Т.е. можно записать:

, где
, а