ПРИМЕСНАЯ ПРОВОДИМОСТЬ
Электропроводность чистых (без примесей) полупроводников невелика из-за относительно небольшого содержания в них свободных электронов и дырок. Ситуация меняется, если в кристалл чистого полупроводника добавить незначительное количество атомов другого элемента с большей или меньшей валентностью атомов. Так, если в кристалл германия (4-х валентен) ввести примесь сурьмы (5-ти валентна), то ковалентная связь между разнородными атомами будет создаваться всеми четырьмя валентными электронами германия и только четырьмя валентными электронами сурьмы. Пятый же валентный электрон сурьмы окажется «не в удел», а поскольку он, будучи валентным, слабо связан с ядром своего атома и не занят в образовании ковалентной связи, то очень легко может покинуть свой атом, став свободным электроном без образования новой дырки. Таким образом, в кристалле полупроводника с примесью окажется больше свободных электронов, чем дырок. Поэтому при наложении на полупроводник внешнего электрического поля в кристалле возникает электрический ток, порождаемый, прежде всего, электронами. Такая проводимость называется электронной или просто проводимостью n-типа.
Если в тот же кристалл германия ввести некоторое количество индия (вместо сурьмы), то проводимость кристалл окажется обратной. Поскольку индий трёхвалентен, то в образовании ковалентной связи смогут принять участие только три его электрона. Такая связь атома индия с атомом германия окажется не до конца укомплектованной, что приведёт к образованию новой дырки без образования свободного электрона. В результате общее число дырок в кристалле окажется больше числа свободных электронов. Проводимость такого кристалла будет осуществляться, прежде всего, дырками. Поэтому она называется дырочнойпроводимостью или проводимостью p-типа.
С физической точки зрения особый интерес представляют процессы, происходящие в контактах полупроводников с различным типом проводимости. Тончайший слой на границе раздела двух полупроводников p- и n-типов принято называть p-n-переходом. При этом, очевидно, что в области полупроводника p-типа имеет место повышенная концентрация дырок, а в области n- типа – повышенная концентрация электронов. В результате взаимной диффузии электронов из n-области в p-область, а дырок из p-области в n-область, вблизи p-n-перехода n-область заряжается положительно, а p-область – отрицательно. При этом на границе раздела полупроводников возникает двойной электрический слой толщиной порядка 0,1 мкм, создающий электрическое поле, направленное от n-области к p-области, которое препятствует дальнейшей диффузии носителей. Благодаря этому полю возрастает энергия неосновных носителей (электронов в p-области и дырок в n-области). При этом в области p-n-перехода энергетические зоны искривляются, что приводит к возникновению потенциальных барьеров для электронов и дырок, а это приводит к оттоку неосновных носителей заряда из соответствующих областей. Поскольку ток неосновных носителей (ток проводимостиили дрейфовый ток
) направлен навстречу току основных носителей (диффузионный ток ), то в результате взаимной компенсации результирующий ток через p-n-переход равен нулю (рис. 1. а.).Ситуация меняется, когда к p-n-переходу приложено внешняя разность потенциалов. Если при этом напряжённость внешнего поля совпадает по направлению с вектором напряженности контактного поля, то говорят, что p-n-переход включён в обратном (запирающем) направлении. Высота потенциального барьера при этом увеличивается, что приводит к уменьшению диффузионного тока (рис. 1. б.). Ток же проводимости, вследствие малой концентрации неосновных носителей, с ростом разности потенциалов на p-n-переходе изменяется очень медленно. При достаточно высоком обратном напряжении на p-n-переходе ток через него обусловлен только дрейфовой составляющей и поэтому вовсе перестаёт зависеть от величины этого напряжения. Значение обратного тока при высоких обратных напряжениях называют током насыщения (
).где
- ток насыщения; е – заряд электрона; k – постоянная Больцмана; Т – абсолютная температура; U – величина напряжения, приложенного к p-n-переходу в обратном направлении. Выражение (1) описывает вольтамперную характеристику (ВАХ) p-n-перехода. Удобным средством при изучении свойств p-n-перехода является полупроводниковый диод, который представляет собой две сваренные между собой пластинки p- и n-типа. В такой пластинке можно выделить три зоны. Две из них расположены по краям, они относительно больших размеров и обладают одна проводимостью p-типа, а вторая - проводимостью n-типа (рис. 2). Третья зона называется p-n переходом и представляет собой очень узкую область, разделяющую области с p- и n-типами проводимости (она образуется на стадии изготовления диода в результате диффузии пластинок полупроводника с различными типами проводимости). Внешние поверхности областей с p- и n-типами проводимости покрывают металлическими электродами. Электрод, контактирующий с областью p-типа, называется анодом, а контактирующий с областью n-типа - катодом.Если на электроды диода подать постоянное напряжение, соединив анод с положительным полюсом источника тока, а катод - с отрицательным, то под действием возникшего электрического поля электроны начнут перемещаться в сторону от катода к аноду (навстречу полю), а дырки - от анода к катоду (по ходу поля). В результате сопротивление p-n перехода резко уменьшается и через него начинает течь электрический ток, величина которого прямо пропорциональна приложенному напряжению. В этом случае говорят, что к диоду приложено прямое напряжение и через диод течёт прямой ток, а сам диод находится в открытом состоянии. Если изменить полярность прикладываемого напряжения, то электроны устремятся к катоду (на него теперь подан «+»), а дырки - к аноду (на нём – «-«). В результате область p-n перехода расширяется, образуя обеднённую зарядами зону, что ведёт к резкому возрастанию электрического сопротивления p-n перехода и ток через диод резко уменьшается в сотни раз. Диод переходит в закрытое состояние. В этом случае говорят, что к диоду приложено обратное напряжение и через диод течёт обратный ток.
Зависимость величины протекающего через диод тока от величины и направления приложенного к диоду напряжения называется вольтамперной характеристикой диода (рис. 3). Существование обратного тока объясняется тем, что технически невозможно изготовить полупроводники p- и n-типов, обладающих только дырочной или только электронной проводимостью. Наличие некоторого количества электронов в полупроводнике p-типа и дырок в полупроводнике n-типа и обеспечивает незначительный ток в обратном направлении (полным отсутствием обратного тока обладают только вакуумные диоды, работающие совершенно по иному принципу и в данной работе не рассматривающиеся). Поскольку величина обратного тока диода очень мала, то соответствующая ему ветвь ВАХ очень плотно «прижата» к оси напряжений.