Стабилитрон представляет собой разновидность диода и способен выполнять его функции. Однако обратная ветвь ВАХ стабилитрона значительно отличается от аналогичного участка этой характеристики диода. По мере роста обратного напряжения ток в обратном направлении через стабилитрон сначала изменяется очень медленно (как у диода), а при достижении обратным напряжением определённой величины, резко возрастает. Ситуация очень похожа на пробой обычного диода, но из строя стабилитрон при этом не выходит (если обратный ток не превышает допустимой величины). Напряжение, начиная с которого стабилитрон входит в режим пробоя, называется напряжением стабилизации
, а соответствующий ему ток минимальным током стабилизации . Предельно допустимый для данного стабилитрона ток стабилизации называется максимальным током стабилизации . Из рисунке 4 видно, что незначительное изменение напряжения ведёт к довольно существенному изменению обратного тока через стабилитрон. Отношение этих величин называется дифференциальным сопротивлением стабилитрона и является очень важной его характеристикой. Величина дифференциального сопротивления является функцией обратного тока стабилитрона. Чем больше этот ток, тем меньше дифференциальное сопротивление, а значит, согласно закону Ома, тем меньше изменение напряжения на электродах стабилитрона. Подробнее работу стабилитрона рассмотрим на примере схемы, изображённой на рис. 5. Эта схема представляет собой простейший параметрический стабилизатор напряжения. Состоит он из стабилитрона и балластного сопротивления, выполняющего роль ограничителя обратного тока через стабилитрон (во избежании перегрева). На вход стабилизатора подаётся постоянное напряжение от внешнего источника питания. Нагрузка стабилизатора подключается непосредственно к электродам стабилитрона. В задачу этого устройства входит поддержание такого режима питания нагрузки, чтобы даже при значительном изменении входного напряжения , изменение напряжения на нагрузке не превышало очень малой величины .Если входное напряжение
по какой-либо причине возрастёт на величину , то и обратный через стабилитрон ток возрастёт на некоторую величину . Это вызовет уменьшение дифференциального сопротивления стабилитрона на величину . Уменьшение же сопротивления приведёт к уменьшению напряжения на электродах стабилитрона, а, значит, и на нагрузке. В результате питаемое нагрузку напряжение останется равным .Легко заметить, что такая комбинация полупроводников напоминает два диода с общим анодом (n-p-n) или катодом (p-n-p). Такая аналогия вполне справедлива и на практике позволяет легко тестировать транзистор на предмет его работоспособности при помощи обычного омметра.
Рассмотрим в общих чертах работу транзистора p-n-p типа. Пусть сначала цепь эмиттер-база разомкнута, а между коллектором и базой приложено обратное напряжение
порядка десяти вольт. В этом случае p-n-переход окажется запертым, и в коллекторной цепи будет протекать обратный ток незначительной величины, являющийся важной характеристикой транзистора. Теперь между эмиттером и базой приложим прямое напряжение порядка единиц вольт. Поскольку эмиттер содержит значительно больше атомов примеси, чем база, то концентрация дырок в эмиттере больше, чем в базе. Так как напряжение приложено к p-n-переходу в прямом направлении, то в цепи эмиттер-база протекает ток значительной величины даже при небольшом значении приложенного напряжения. В базе некоторая часть дырок рекомбинирует со свободными электронами, убыль которых пополняется новыми электронами, поступающими из внешней цепи, образуя в ней ток базы . В базе вследствие диффузии большая часть дырок доходит до коллекторного перехода и под действием электрического поля источника проникает через p-n-переход в коллектор. В результате в цепи база-коллектор возникает ток того же порядка, что и на участке эмиттер-база. Отношение приращения коллекторного тока к соответствующей величине приращения эмиттерного тока при постоянном напряжении на коллекторе называется коэффициентом передачи тока: (при )и является одной из важнейших характеристик любого транзистора.
Из сказанного следует, что коэффициент передачи тока всегда меньше единицы и принимает значение порядка 0,9-0,99.
Как было сказано выше, транзистор может быть использован в качестве усилителя напряжения, тока или мощности. При этом усиливаемый сигнал подаётся на два электрода транзистора (вход), а усиленный сигнал снимается тоже с двух электродов (выход). Таким образом, один электрод является общим для входной и выходной цепей. В зависимости от того, какой из электродов является общим, различают три схемы включения транзистора: с общим эмиттером (ОЭ), с общим коллектором (ОК) и с общей базой (ОБ).