Смекни!
smekni.com

Изучение свойств P-N-перехода различными методами (стр. 7 из 7)

6. Повторяют измерения при токах базы

= 100 мкА и
= 150 мкА.

7. Результаты измерений заносят в нижеприводимую таблицу, по которой строят три выходные характеристики

транзистора
.
= 50 мкА
= 100 мкА
= 150 мкА
, В
, мА
, В
, мА
, В
, мА
1
2
3

ВЫПРЯМЛЕНИЕ ТОКА

Способность диода проводить электрический ток только в одном направлении может быть использована при выпрямлении переменного тока. Наибольшее распространение на практике получили две схемы выпрямления переменного тока: однополупериодная и двухполупериодная (или мостовая).


На рисунке 6 а показана схема однополупериодного выпрямителя, который представляет собой всего один диод, включённый последовательно с нагрузкой
. В течение второй половины периода на аноде диода действует положительный полупериод напряжения, а на катоде – отрицательный. При этом диод открывается и через него, а значит и через нагрузку
, протекает ток. В течение второй половины периода, когда на аноде диода действует отрицательный полупериод напряжения, а на катоде – положительный, диод закрыт и ток через нагрузку практически не течёт (при этом через нагрузку протекает обратный ток диода, значительно меньший прямого). Таким образом диод, отсекая отрицательные полупериоды переменного тока, пропускает через нагрузку пульсирующий ток одного направления (в течение положительных полупериодов переменного напряжения). Нарисунке 7 показаны графики временной зависимости переменного тока и выпрямленного (пульсирующего) тока, протекающего через нагрузку. Однополупериодный выпрямитель обеспечивает частоту пульсаций тока, равной частоте переменного тока.

Мостовая схема выпрямления тока представляет собой четыре диода, соединённых по схеме, показанной на рисунке 6 б. Принцип действия мостового выпрямителя состоит в следующем. В течение первой половины периода переменного напряжения открытыми оказываются только диоды Д1 и Д3. При этом ток протекает через диод Д1, нагрузку и диод Д3 (сплошные стрелки на рисунке). В течение второй половины периода открытыми оказываются диоды Д2 и Д4, а диоды Д1 и Д3 – закрыты. Теперь ток протекает через диод Д2, нагрузку и диод Д4 (пунктирные стрелки на рисунке). В результате через нагрузку протекает ток в течение обоих полупериодов переменного напряжения. При этом направление тока не меняется. Следовательно через нагрузку течёт постоянный ток, который так же является пульсирующим, но частота пульсаций в этом случае вдвое больше частоты переменного тока. На рисунке 7 графически показан результат работы мостового выпрямителя в сравнении с работой однополупериодного выпрямителя.

Напряжение на выходе любого из рассмотренных выпрямителей изменяется со временем аналогичным образом (в соответствии с законом Ома). Но таким (пульсирующим) напряжением можно питать далеко не любую нагрузки. Например, лампочку накаливания можно, а радиоприёмник – нет, т. к. в этом случае в динамике будет прослушиваться низкочастотный гул частотой 50 Гц. Сгладить пульсации выпрямленного напряжения можно при помощи сглаживающего фильтра, роль которого обычно выполняет электролитический конденсатор достаточно большой ёмкости (порядка 1000 мкФ).


Для этого необходимо параллельно нагрузке подключить электролитический конденсатор как показано на рисунке 8. Когда напряжение на нагрузке возрастает (первая четверть полупериода), конденсатор заряжается, а когда напряжение начинает убывать, конденсатор разряжается на нагрузку по экспоненциальному закону, тем самым, поддерживая в нагрузке ток. Чем больше ёмкость конденсатора, тем больше его постоянная времени и тем, следовательно, медленнее конденсатор разряжается, что приводит к уменьшению глубины пульсаций выпрямленного тока. При достаточно большой ёмкости конденсатора пульсации практически исчезают. В этом случае на выходе выпрямителя действует сглаженное напряжение, равное амплитуде пульсирующего напряжения. При измерении пульсирующего напряжения следует помнить, что вольтметр фиксирует действующее значение напряжения
, которое связано с амплитудным напряжением
соотношением:

.

Поэтому, как следует из выше сказанного, показания вольтметра при измерении сглаженного напряжения окажутся в

больше показаний прибора при измерении соответствующего пульсирующего напряжения.

СТАБИЛИЗАЦИЯ ТОКА


Суть эксперимента по изучению стабилизирующих свойств полупроводникового стабилитрона состоит в измерении напряжения, действующего на электродах стабилитрона при принудительном изменении величины питающего схему напряжения. Схема соответствующей установки показана на рисунке 9. Исследуемый стабилитрон VD2 и резисторы
и
здесь выполняют те же функции, что и в схеме, показанной на рисунке 5. Полупроводниковый диод VD1 является разделительным элементом между источником питающего (нестабилизированного, измеряемого вольтметром V1) напряжения и напряжением на нагрузке (стабилизированного, измеряемого вольтметром V2). Реостат R предназначен для плавной регулировки питающего напряжения.

Выполнение задания сводится к снятию зависимости

,

где

- величина питающего схему напряжения,
- величина стабилизированного напряжения (на электродах стабилитрона).

Результаты измерений целесообразно представлять графически как зависимость относительного изменения напряжения

на электродах стабилитрона от напряжения
. Величина
, очевидно, определяется выражением:

.