3) показано, что в определенных случаях, как спектр коллективной сдвиговой ПАВ, так и условия безотражательного прохождения могут обладать невзаимностью относительно инверсии направления распространения сдвиговой волны вдоль поверхности сверхрешетки.
Основой для поиска новых магнитных фаз в системах Cu-Ge-Cr-X (X = S,Se) послужили результаты анализа их концентрационных треугольников, показавшие возможность образования новых соединений на разрезах Cu2GeX3–Cr2X3.
В процессе проведенного исследования было установлено, что разрез Cu2GeSe3–Cr2Se3 является стабильным сечением тройной системы Cu2Se–GeSe2–Cr2Se3, на котором существуют два новых четверных соединения в виде фаз переменного состава Cu2GeCr4Se9 (γ) и Cu2GeCr6Se12 (δ).
Границы областей гомогенности этих соединений, уточненные по зависимости параметра элементарной ячейки от состава, находились для γ-фазы в интервале концентраций 65-70 % мол.% Cr2Se3, а для δ-фазы — в районе 73-79 мол.% Cr2Se3.
Рентгеновские отражения первого соединения были проиндицированы в тетрагональной сингонии с параметрами a = 12,043 Å, c = 9,180 Å, объем элементарной ячейки составил V = 1331,36 Å3. Измерения температурных и полевых зависимостей намагниченности синтезированных образцов проводились на СКВИД-магнитометре MPMS (QuantumDesign) в интервале температур 5-300 К и магнитных полей до 50 кЭ. Они показали, что обоим соединениям Cu2GeCr4Se9 и Cu2GeCr6Se12 близок спин-поляронный тип ферромагнетизма, рассмотренный в теоретических работах Э.Л. Нагаева. Соответственно, полученные результаты были интерпретированы на основе модели с определяющей ролью косвенного обменного взаимодействия через носители заряда, которое способствует установлению и поддержанию в материале ферромагнитного порядка.
Сплавы в системе Cu2GeSe3–Cr2Se3 по температурным зависимостям начальной магнитной восприимчивости можно подразделить на две группы. Первой группе принадлежат сплавы с содержанием 65-68,5 мол.% Cr2Se3 (γ-фаза). В них, как показал анализ экспериментальных данных, наблюдаемый ход зависимости восприимчивости от температуры обусловлен присутствием в антиферромагнитной γ- матрице определенного количества фазы кластерного спинового стекла с температурой замораживания, примерно равной Tf ~ 33 K.
Образец с содержанием 70 мол.% Cr2Se3, расположенный на границе области гомогенности той же γ-фазы, отличался от вышеуказанных сплавов наличием выраженного магнитного фазового перехода типа "парамагнетик–ферромагнетик" с температурой Кюри TС = 95 К, а также наличием возвратного перехода типа "ферромагнетик–спиновое стекло" с температурой замораживания спинов, равной Тf~ 33 К.
Образец из области гомогенности второго соединения – Cu2GeCr6Se12 (δ), содержащий 73 мол.% Cr2Se3, может быть охарактеризован как антиферромагнетик, у которого точка Нееля располагается вблизи температуры замораживания Tf ~ 33 K, в значительной мере перекрываясь с последней.
Что же касается стехиометрического состава соединения Cu2GeCr6Se12 (75 мол.% Cr2Se3), то в нем наблюдались относительно размытый фазовый переход в ферромагнитное состояние с температурой Кюри в районе Тс~ 95-135 К, а также возвратный переход "ферромагнетик–спиновое стекло" с температурой замораживания спинов Тf ~ 33 К.
Таким образом, из представленных выше магнитных данных следует, что отличительной чертой новых соединений Cu2GeCr4Se9 и Cu2GeCr6Se12, существующих в системе Cu2GeSe3–Cr2Se3, является существование магнитного фазового перехода в области их гомогенности, то есть в области собственного атомного разупорядочения. Этот переход является управляемым, так как с изменением содержания хрома или концентрации носителей заряда, обусловленной отклонением состава соединения от стехиометрии, тип магнитного упорядочения в образцах может обратимым образом изменяться от антиферромагнитного к ферромагнитному и наоборот.
При исследовании следующего, родственного разреза Cu2GeS3–Cr2S3, была обнаружена новая фаза переменного состава Cu2GeCr6S12 (η), кристаллизующаяся в кубической сингонии. Границы ее области гомогенности, уточненные по излому на зависимости параметра элементарной ячейки от состава, лежали в интервале 69-76 мол.% Cr2S3. Параметр решетки соединения увеличивался от 9,867 Å (69 мол.% Cr2S3) до 9,914 Å (76 мол.% Cr2S3) в соответствии с законом Вегарда.
Согласно проведенным измерениям все образцы на разрезе Cu2GeS3–Cr2S3 являются кластерными спиновыми стеклами с температурами замораживания спинов в районе Тf= 20-25 К, что подтверждается характером их температурной, а также полевой зависимости намагниченности, имеющей тенденцию к отклонению от линейности.. В сильных магнитных (до 50 кЭ) полях низкотемпературные пики намагниченности или размывались, или не регистрировались из-за своей малости, что говорит в пользу их спин-стекольного происхождения. Кроме того, об образовании спиновых стекол в системе Cu2GeS3–Cr2S3 свидетельствовало смещение петли гистерезиса по полю, наблюдавшееся при 5 К практически у всех исследованных образцов. Коэрцитивная сила при этом изменялась от 200 Э (70 мол.% Cr2S3) и 450 Э (75 мол.% Cr2S3) до 900 Э (73 мол.% Cr2S3) в зависимости от состава образца. С повышением температуры в системе происходил магнитный переход типа "спиновое стекло–парамагнетик", и полевые зависимости намагниченности образцов при Т = 125 К приобретали линейный вид.
Для всех образцов на температурной зависимости обратной восприимчивости в районе 200 К наблюдается изменение наклона кривой, обусловленное по всей вероятности образованием магнитных кластеров. Эффективный магнитный момент, рассчитанный для интервала температур Т ≈ 80–190 К варьировал в районе 3 µB, что меньше теоретического значения µ = 3,87 µB. По-видимому, со снижением температуры от 200 К происходит образование обменно-усиленных парамагнитных кластеров с суммарным магнитным моментом 3 µB, которые при охлаждении ниже 25 К образуют кластерное спиновое стекло. Выше 200 К парамагнитные ионы хрома существуют в виде магнитно невзаимодействующих частиц с магнитным моментом, близким или равным теоретическому. Отрицательные значения парамагнитной температуры Кюри на этом участке свидетельствуют о том, что взаимодействие между ионами хрома носит антиферромагнитный характер.
По сравнению с Cu2GeCr6Se12 (δ- фаза) в случае соединения Cu2GeCr6S12 (η- фаза) количество ферромагнитных связей, обусловленное отклонением состава соединения от стехиометрического, по-видимому, недостаточно для реализации полноценного магнитного фазового перехода. Соответственно, различие по магнитным свойствам между Cu2GeCr6S12 и родственной фазой на разрезе Cu2GeSе3–Cr2Sе3 может быть интерпретировано как усиление в ряду S → Se ферромагнитных взаимодействий.
Работа выполнена при содействии Российского Фонда Фундаментальных исследований (проект № 06-03-32526) и в рамках Программы ОХНМ РАН (№ 8).В последнее время все большее внимание уделяется рассмотрению экситонных состояний в двумерных структурах. Главным образом исследования связаны с поисками бозе-эйнштейновской конденсации экситонов [1]. Особый интерес представляет изучение конденсации непрямых экситонов, имеющих большое время жизни, в низкоразмерных структурах.
В основном состоянии сульфида европия все внешние оболочки анионов заполнены, внешние оболочки катионов пусты, внутренние
- или - оболочки заполнены частично, но их электроны не могут принять участия в переносе заряда, т.к. каждый ( ) – электрон локализован на своем ионе. Зона проводимости получается в результате гибридизации частично заполненных и полностью пустых состояний оболочек катионов. 4 - уровни расположены чуть ниже дна зоны проводимости, в запрещенной зоне, и могут рассматриваться в качестве примесных. Дно зоны проводимости находится в точке , а низшие ее точки, образованные главным образом состояниями - типа находятся в точке .Для накопления экситонов необходимо, чтобы он был самым нижним возбужденным состоянием системы. Согласно модели магнитного экситона, на
- уровне рождается дырка, электрон переходит в зону проводимости и образует с последней связанное состояние. - обменное взаимодействие между электроном магнитного экситона и - электронами всех атомов, кроме центрального обуславливает сдвиг края поглощения. Магнитный экситон является статическим образованием, поэтому его оптически активный электрон должен обладать - симметрией вместе с - дыркой и локализовываться в точке .