Смекни!
smekni.com

Изучение тепловых явлений в школьном курсе физики (стр. 1 из 7)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования “Брестский государственный университет

имени А.С. Пушкина”

Кафедра методики преподавания физики и ОТД

Курсовая работа на тему:

«Изучение тепловых явлений в школьном курсе физики»

Выполнил: студент 4 курса

физического факультета

специальность «Физика»

Шустик Р.М.

Проверил:

Брест, 2009


СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ТЕПЛОВОЕДВИЖЕНИЕ. ТЕМПЕРАТУРА ТЕЛ

2. ВНУТРЕННЯЯ ЭНЕРГИЯ ТЕЛ И СПОСОБЫ ЕЕ ИЗМЕРЕНИЯ

3. ВИДЫ ТЕПЛОПЕРЕДАЧИ

4. КОЛИЧЕСТВО ТЕПЛОТЫ. ЕДИНИЦЫ КОЛИЧЕСТВА ТЕПЛОТЫ

5. УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ ВЕЩЕСТВА. РАСЧЕТ КОЛИЧЕСТВА ТЕПЛОТЫ

6. ЭНЕРГИЯ ТОПЛИВА. УДЕЛЬНАЯ ТЕПЛОТА СГОРАНИЯ ТОПЛИВА

7. ПЛАВЛЕНИЕ И ОТВЕРДЕВАНИЕ КРИСТАЛЛИЧЕСКИХ ТЕЛ

8. УДЕЛЬНАЯ ТЕПЛОТА ПЛАВЛЕНИЯ И ОТВЕРДЕВАНИЯ

9. ИСПАРЕНИЕ. КОНДЕНСАЦИЯ

10. КИПЕНИЕ

11. КОНДЕНСАЦИЯ

12. ТЕПЛОВЫЕ ДВИГАТЕЛИ

13. РАБОТА ГАЗА И ПАРА ПРИ РАСШИРЕНИИ. ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

«Тепловые явления» включает систему понятий, формирование которых имеет важное мировоззренческое и политехническое значение. К ним относятся: тепловое движение, внутренняя энергия, способы изменения внутренней энергии, количество теплоты, удельная теплоемкость вещества, изменение агрегатных состояний вещества (плавление и отвердевание, испарение и конденсация) их объяснение на основе молекулярно-кинетических представлений, превращения энергии в механических и тепловых процессах, тепловые двигатели.

Обилие понятий, которые нужно усвоить учащимся, требует тщательной разработки методики их формирования. Учитель при этом должен опираться на знания, полученные учащимися при изучении первоначальных сведений о строении вещества в VII классе, на понятия о работе и энергии. Это необходимо для объяснения сущности тепловых явлений и формирования основных понятий, таких, как тепловое движение, температура, внутренняя энергия, теплопередача, количество теплоты, удельная теплоемкость вещества.

Определённые методические трудности возникают в связи с устаревшей терминологией. Основные термины — «теплота», «количество теплоты», «теплоемкость», «тепловая передача», «теплообмен» — появились в период теплородных представлений, когда под теплотой понимали особую материальную среду. При современных взглядах на природу теплоты такая терминология затрудняет правильное понимание учащимися физической сущности данных терминов и понятий. Однако иной терминологии пока не существует.

Для преодоления трудностей при изучении тем, связанных с формированием у школьников многих сложных и абстрактных понятий, надо идти по пути самого широкого использования демонстрационного и лабораторного физического эксперимента, решения задач и привлечения примеров из жизни, быта, природы и производства.

В неявном виде в данной теме учащиеся знакомятся с первым законом термодинамики и в некоторой степени — со вторым.


1. ТЕПЛОВОЕ ДВИЖЕНИЕ. ТЕМПЕРАТУРА ТЕЛ

Приступая к изучению темы, необходимо повторить и уточнить с учащимися основные положения молекулярно-кинетической теории, поскольку на них придется опираться при изучении всего раздела. При повторении необходимо остановиться на особенностях движения частиц, из которых состоят газообразные, жидкие и твердые тела. Учащиеся вспоминают, что микрочастицы (молекулы) находятся в непрерывном движении. Молекулы газа, например, движутся по прямой линии, сталкиваясь, они изменяют скорость и направление своего движения и вновь продолжают движение до следующего соударения. Движение молекул беспорядочно. Такое движение получило название теплового движения.

Напоминают также учащимся, что скорость движения частиц связана с температурой тела: чем быстрее движутся частицы, тем более нагретым оказывается тело.

Связь скорости движения частиц с температурой тела можно продемонстрировать при наблюдении следующего опыта. Кристаллизатор разделяют водонепроницаемой перегородкой (пластилин) на две части. В одну половину кристаллизатора наливают горячую воду, в другую — холодную. Наличие пара с поверхности горячей воды свидетельствует о более высокой температуре. Одновременно в воду опускают одинаковые по размеру кусочки кровяной соли (гексациано феррата калия). Опытнаблюдается в проекции (рис. 20.1), он доказывает, чем выше температура, тем скорость диффузии больше. Значит, тем быстрее движутся частицы.

На основе понятия о тепловом движении переходят к уточнению понятия температуры.

Научное определение температуры требует введения понятия теплового равновесия, установления эмпирической шкалы температур, выбора термометрического тела и температурного признака. Данные понятия будут введены только в X классе. В VIII классе достаточно, если учащиеся воспримут понятие температуры как «степени нагретости тела» познакомятся с устройством и принципом действия жидкостных термометров и научатся измерять ими температуру.

Принцип действия термометра, основанного на тепловом расширении, удобно пояснить на опыте с прибором, изображенном на рисунке 20.2. Подогревая колбу помещенную в сосуд с горячей водой, показывают, что чем дольше подогревается вода в колбе, тем выше уровень столбика воды в трубке. Если жидкость в колбе имеет температуру окружающей среды, то по высоте столбика можно также судить и о температуре этой среды (воздуха, воды).

На уроке следует рассмотреть лабораторный и медицинский термометры.

Учащихся необходимо познакомить со следующими правилами измерения температуры: каждый термометр предназначен для измерения температуры лишь в определенных пределах; нельзя пользоваться термометром, если измеряемая температура может оказаться ниже или выше установленных для данного термометра предельных значений; отсчет по термометру надо производить спустя некоторое время, в течение которого он принимает температуру среды; при измерении температуры термометр (кроме медицинского) не должен извлекаться из среды, температуру которой определяют; глаз наблюдателя должен находиться на уровне верхнего конца столбика жидкости, наполняющей термометр.

Полезно сообщить некоторые значения температур, встречающихся в природе и технике. Различные млекопитающие имеют нормальную температуру от 35 до 40,5 °С; температура здорового человека 36—37 °С; температура птиц 39,5—44 °С. Наиболее высокая температура воздуха на Земле (58 °С) зарегистрирована в Триполи, а наиболее низкая (—88,3 °С) — в Антарктиде. Вольфрамовая нить накала газонаполненной лампы нагревается током до 2525 °С, а температура поверхности Солнца около 6000 °С.


В демонстрационных опытах наряду с жидкостным термометром можно использовать и электрический, поскольку жидкостный демонстрационный термометр имеет существенный недостаток: он обладает сравнительно большой теплоемкостью и тепловой инерцией (время измерения 1 —1,5 мин, объем жидкости не менее 200 см3).

Промышленность выпускает для школ электрический термометр, датчиком которого является термистор, присоединяемый к измерительному мосту с демонстрационным гальванометром. Электрический термометр можно изготовить своими силами.

Так как учащиеся VIII класса незнакомы с физическими явлениями, которые используются в электрическом термометре, то будет достаточно, если учитель объяснит им принцип градуировки прибора и, измеряя, например, температуру воды электрическим и жидкостным термометрами, убедит учащихся в возможности измерения таким прибором температуры тел.

Для тренировки учеников в отсчетах по шкалам термометров полезно провести со всем классом упражнения с демонстрационной моделью, имеющей набор различных шкал (рис. 20.3).

2. ВНУТРЕННЯЯ ЭНЕРГИЯ ТЕЛ И СПОСОБЫ ЕЕ ИЗМЕРЕНИЯ

В современных курсах физики, содержание понятия «внутренняя энергия» раскрывается следующим образом: «В зависимости от характера движения и взаимодействия частиц, образующих тело, внутреннюю энергию можно разбить на следующие составные части:

а) кинетическую энергию хаотического движения молекул (поступательного и вращательного);

б) потенциальную энергию, обусловленную силами межмолекулярного взаимодействия;

в) кинетическую и потенциальную энергию колебательного движения атомов и молекул;

г) энергию электронных оболочек атомов и ионов, а также внутриядерную энергию».

В VIII классе будет достаточным, если учащиеся усвоят, что энергия хаотического движения молекул (молекулярно-кинетическая) и энергия взаимодействия молекул (молекулярно-потенциальная) являются частью внутренней энергии тела. Такой подход правомерен и с научной точки зрения, так как тепловые явления, изучаемые в школе, протекают в пределах среднего температурного диапазона, при котором изменение внутренней энергии тел связано главным образом с изменением кинетической и потенциальной энергии молекул.

В ознакомительном плане можно также сказать, как это сделано в учебнике для VIII класса, что к внутренней энергии относится также атомная энергия, понятие о которой учащиеся получат при изучении электричества.

Приступая к формированию понятия внутренней энергии и способах ее изменения, необходимо предложить учащимся вспомнить, что они знают о механической энергии и внутреннем строении тел.

Здесь важно уточнить понимание учащимися следующих вопросов: «В каком случае о телах говорят, что они обладают энергией?», «Какие виды механической энергии различают?», «Какие тела обладают кинетической энергией и от чего она зависит?», «От чего зависит потенциальная энергия тел?». Понимание этих вопросов поможет школьникам при изучении внутренней энергии не путать ее с механической энергией.