Инвариантность физических законов
В последние два столетия в науке происходило бурное размежевание научных дисциплин. В физике помимо классической механики Ньютона появились электродинамика, термодинамика, ядерная физика, физика различных агрегатных состояний, специальная и общая теории относительности, квантовая механика и многое другое. Произошла узкая специализация. Физики перестали понимать друг друга. Теорию суперструн, например, понимают лишь насколько сот человек во всем мире. Чтобы профессионально разбираться в теории суперструн, нужно заниматься только теорией суперструн, на остальное просто не хватит времени.
Но не следует забывать, что столь разные научные дисциплины изучают одну и ту же физическую реальность – материю. Наука, а особенно физика, вплотную подошла к тому рубежу, когда дальнейшее развитие возможно только путем интегрирования (синтеза) различных научных направлений.
Рассмотрим для начала периодическую систему измерения физических величин, являющуюся первым шагом в этом направлении.
В отличие от международной системы единиц СИ, имеющей 7 основных и 2 дополнительные единицы измерения, в периодической системе единиц измерения используется одна единица – метр (табл.1). Переход к размерностям периодической системы измерения осуществляется по правилам:
(1.1) (1.2)Где: L, Tи М – размерности длины, времени и массы соответственно в системе СИ.
Размерности всех остальных физических величин установлены на основании так называемой «пи-теоремы», утверждающей, что любая верная зависимость между физическими величинами с точностью до постоянного безразмерного множителя соответствует какому-либо физическому закону.
Чтобы ввести новую размерность какой-либо физической величины, нужно:
• подобрать формулу, содержащую эту величину, в которой размерности всех других величин известны;
• алгебраически найти из формулы выражение этой величины;
• в полученное выражение подставить известные размерности физических величин;
• выполнить требуемые алгебраические действия над размерностями;
• принять полученный результат как искомую размерность.
«Пи-теорема» позволяет не только устанавливать размерности физических величин, но и выводить физические законы. Рассмотрим для примера задачу о гравитационной неустойчивости среды.
Известно, что как только длина волны звукового возмущения оказывается больше некоторого критического значения, силы упругости (давление газа) не в состоянии вернуть частицы среды в первоначальное состояние. Требуется установить зависимость между физическими величинами.
Имеем физические величины:
•
- длина фрагментов, на которые распадается однородная бесконечно протяженная среда;•
- плотность среды;• a- скорость звука в среде;
• G- гравитационная постоянная.
В системе СИ физические величины будут иметь размерность:
~ L ; ~ ; a~ ; G ~Из
, и составляем безразмерный комплекс: ,где:
и - неизвестные показатели степеней.Таким образом:
Так как П по определению величина безразмерная, то получаем систему уравнений:
Решением системы будет:
; ,следовательно,
Откуда находим:
(1.3)Формула (1.3) с точностью до постоянного безразмерного множителя описывает известный критерий Джинса. В точной формуле
.Формула (1.3) удовлетворяет размерностям абсолютной системы измерения физических величин. Действительно, входящие в (1.3) физические величины имеют размерности:
~ ; ~ ; ~ ; ~Подставив размерности абсолютной системы в (1.3), получим:
Анализ периодической системы измерения физических величин показывает, что механическая сила, постоянная Планка, электрическое напряжение и энтропия имеют одинаковую размерность:
. Это означает, что законы механики, квантовой механики, электродинамики и термодинамики – инвариантны. Например, второй закон Ньютона и закон Ома для участка электрической цепи имеют одинаковую формальную запись: ~ (1.4) ~ (1.5)При больших скоростях движения во второй закон Ньютона (1.4) вводится переменный безразмерный множитель специальной теории относительности:
Если такой же множитель ввести в закон Ома (1.5) , то получим:
(1.6)Согласно (1,6) закон Ома допускает появление сверхпроводимости, так как
при низких температурах может принимать значение, близкое к нулю. Абсолютная система измерения играет в физике такую же роль, какую в химии играет периодическая система элементов Менделеева. Если бы в физике с самого начала применялась абсолютная система измерения физических величин, то явление сверхпроводимости наверняка было бы предсказано вначале теоретически, а уже потом обнаружено экспериментально, а не наоборот.С другой стороны, в законе Ома для полной электрической цепи берется полное сопротивление цепи, включающее сопротивление источника тока. Значит, во втором законе Ньютона следует тоже брать полное ускорение, включающее обычное ускорение и некоторое дополнительное ускорение. Можно показать, что таким ускорением является ускорение расширения Вселенной. Замерить ускорение расширения современные технические средства не могут. Применим для решения этой задачи абсолютную систему измерения физических величин.
Вполне естественно предположить, что ускорение расширения Вселенной
зависит от расстояния между космическими объектами и от скорости расширения Вселенной . Решение задачи изложенным выше методом дает формулу:В точной формуле
Инвариантность физических законов позволяет уточнить физическую сущность многих физических понятий. Одно из таких «темных» понятий – понятие энтропия. Так как энтропия и сила – это физические синонимы, то энтропию, вопреки существующему заблуждению, можно не только вычислить, но и измерить и она может быть как положительной, так и отрицательной.
Рассмотрим для примера металлическую спиральную пружину, которую можно считать механической системой атомов кристаллической решетки металла. Если сжать пружину, то кристаллическая решетка деформируется и создаст силы упругости, которые всегда можно измерить. Сила упругости пружины будет той самой механической энтропией. Но пружину можно и растянуть, тогда сила упругости изменит знак, а значит, изменится и знак энтропии.