4-съемный свод,
5-сливной носок,
6-стальной кожух,
7-ось поворота,
8-магнитопровод из
трансформаторной стали.
Индуктор имеет форму полого цилиндра и образован уложенными в виде спирали витками из медной трубки. Профили применяемых медных трубок показаны на рис. 5, а; равностенные трубки используют обычно для печей повышенной частоты, а разностенные — для печей промышленной частоты. Для исключения электрического пробоя витки, как правило, изолируют (на малых печах с небольшим напряжением достаточна воздушная изоляция, достигаемая зазором между витками в 10—20 мм). Широко применяют следующие виды изоляции: обмоточную, когда витки покрывают изоляционным лаком и затем обматывают лентой из диэлектрического материала (стеклоленты, микаленты); прокладочную, когда между покрытыми лаком витками закрепляют диэлектрические прокладки (например, из стеклотекстолита); напыленную, когда на поверхность трубки газопламенным или плазменным способом наносят слой окиси алюминия или двуокиси циркония с последующим покрытием лаком.
Иногда применяют монолитную изоляцию — покрытые лаком витки заливают полимерным материалом (полиэфирным компаундом), после застывания которого образуется монолитная конструкция.Прочность и жесткость индуктора, являющегося опорой футеровки тигля, обеспечивают, применяя индукторы двух следующих разновидностей: с креплением витковшпильками и стяжные индукторы. Во-первых, к виткам индуктораприваривают латунные шпильки; с помощью шпилек и латунных гаек витки крепят к нескольким вертикальным стойкам (рис.5б), из изоляционного материала текстолита, асбоцемента ,дерева; стойки в свою очередь крепят к опорным плитам каркаса, расположенным над индуктором и под ним. В стяжных индукторах над верхним и под нижним витками размещают нажимные фланцы, которые стягивают в осевом направлении с помощью специальных болтов и вертикальных реек из изоляционного материала (см. рис. 5, в); вертикальные рейки препятствуют смещению витков в поперечном направлении. Для придания жесткости индуктору и его крепления в каркасе дополнительно используют пакеты магнитопровода, которые прижимают к индуктору через изолирующие прокладки с помощью специальных нажимных болтов.
Если индуктор выполнен монолитным, то в нем не требуется дополнительного крепления витков, однако такие индукторы применяют редко из-за сложности ремонта трубки в случае ее повреждения,
Высоту индуктора выбирают в пределах 1,1 —1,2 высоты расплава в тигле, внутренний диаметр определяют из соотношения:D=DT+2b (ф) +2b (и),где Dtи b (ф) — соответственно внутренний диаметр и толщина футеровки в середине тигля; b (и) — толщина изоляционного слоя (<5—6мм). Число витков индуктора определяют расчетом; плотность токов в индукторе достигает 20—40 А/мм2. Подвод тока к индуктору чаще всего осуществляют с помощью гибких кабелей.
По внутренней полости медной трубки пропускают охлаждающую воду. Для обеспечения равномерного охлаждения на средних и больших печах индуктор делят на 2—4 секции с самостоятельным подводом воды. Поступление воды контролируется реле, отключающем питание печи при перерыве в подаче воды.
Футеровка индукционной печи состоит из следующих основных элементов: футеровки тигля, подовой плиты (подины), верхней керамики (воротника) со сливным носком. Подовая плита служит основанием для футеровки тигля и для индуктора; на средних и крупных печах ее выполняют из шамотных блоков или кирпичей, иногда на крупных печах — из огнеупорного бетона. На малых печах подовую плиту делают также из нескольких асбоцементных плит, уложенных одна на другую (см. рис. 3).
Футеровку тигля, как правило, делают набивной, при плавке она спекается в монолит; на больших печах тигель иногда выкладывают из кирпичей. Воротник, т. е. футеровку выше верхнего витка индуктора, которая не может спекаться за счет тепла жидкого металла, делают из фасонных кирпичей (шамота, хромомагнезита) или из огнеупорных масс с повышенным количеством связующих. Сливной носок представляет собой фасонное изделие из шамота.
Футеровка тигля должна обладать следующими свойствами: высокой огнеупорностью и шлакоустойчивостью; высокой термостойкостью, так как при загрузке шихты она сильно охлаждается; высокой механической прочностью, чтобы выдерживать удары шихты при загрузке; минимальной толщиной, поскольку металл должен находиться как можно ближе к индуктору, т. е. в зоне наибольшей плотности индуктируемых токов.
Рис. 5.
Профили трубок для изготовления
Индуктора(а) и способы крепления
витков индуктора (б, в):
1- латунная шпилька .
2- гайка.
3- витки индуктора
4-стойка из изоляционного материала .
5-стяжной болт .
6-вертикальная рейка.
7-нажимной фланец.
1 Футеровка может быть основной или кислой. Набивную кислую футеровку изготовляют из дробленого кварцита (фракции размером менее 3,5 мм) или кварцевого песка с добавкой в качестве связующего борной кислоты (1,5—4 %) без увлажнения. Для основных тиглей применяют огнеупорные смеси разных составов, наиболее часто магнезитовый порошок; в качестве связки используют огнеупорную глину, жидкое стекло, плавиковый шпат, борную кислоту и др. Применяют как увлажненные, так и сухие смеси. Перед набивкой тигля внутреннюю поверхность индуктора покрывают тонким изолирующим слоем, например, нанося специальную изоляционную обмазку с последующей обклейкой стеклолентой; иногда дополнительно укладывают теплоизоляционный слой из асбеста. На дне индуктора засыпают слой футеровочной массы, утрамбовывают ее и затем устанавливают на нее железный шаблон, наружные размеры которого соответствуют внутренним размерам тигля. В пространство между шаблоном и индуктором засыпают футеровочную смесь и уплотняют ее трамбовками. Затем выполняют воротник из фасонных кирпичей или специальных масс с повышенным количеством связующих.
После окончания набивки футеровку сушат и спекают. Для этого, не вынимая шаблона, включают плавильную установку; тепло, выделяемое в шаблоне, нагревает футеровку. В зависимости от емкости тигля спекание длится от 1 до 4 ч для кислого тигля и от 2 до 10 ч для основного. Окончательное спекание с расплавлением шаблона происходит во время первой плавки. Спекание можно проводить, вставив в тигель соответствующих размеров кусок готового электрода. Тигли емкостью до 300 кг иногда набивают увлажненной массой в специальной разборной пресс-форме. После сушки на воздухе такой тигель устанавливают в индуктор на подовую плиту, а пространство между индуктором и тиглем засыпают мелким огнеупорным порошком.
Стойкость кислых тиглей составляет 20—250 плавок. Основная футеровка обладает меньшей термостойкостью и стойкость основных 'тиглей значительно ниже (от 10 до 100 плавок; меньшая величина — для печей большой емкости). Средний внутренний диаметр тигля Оти высоту расплава h(p)определяют исходя из заданной емкости печи (объема металла) с учетом того, что величина отношения Н,,ЮТдолжна составлять 1,6—2,0 для 100-кг печи и снижаться при увеличении емкости (до 1,1—1,4 для 6-т печи). Толщину футеровки (м) в середине тигля определяют по формуле: b(ф)~ 0,08 Т(^1/4), где Т — емкость печи, т. Примерные соотношения между размерами тиглей и индукторов сталеплавильных печей приведены в табл. 1. Механизм наклона предназначен для наклона печи при сливе металла. Металл из тигля сливают через сливной носок, поворачивая установленный на двух цапфах каркас печи на угол До 95°. Наклон печи осуществляют лебедками, тельферами, а на крупных печах устанавливают гидравлический механизм наклона.
Таблица 1. Размеры индуктора и тигля индукционных печей
Рис. 6.
Упрощенная электрическая
схема индукционной печи.
Емкость,кг | Размеры индуктора, | Размеры тигля, мм | ||||
высота | Внутренний диаметр | глубина | толщина дна | сверху и снизу | ||
100 | 490 | 410 | 440 | 165 | 50 | 80 |
500 | 790 | 700 | 610 | 215 | 70 | 100 |
8000 | 1300 | 1380 | 1200 | 200 | ПО | 150 |
1400 | 830 | 760 | 720 | 200 | 90 | 130 |
Электрическое оборудование -служит для подачи питания на индуктор индукционной печи. Упрощенная электрическая схема индукционной печи повышенной частоты, питаемой от машинного пли лампового генератора, показана на рис. 6.Переменный ток высокой частоты от генератора через выключатель 2 подается на индуктор 3, параллельно которому подключены конденсаторы 5 и 6. Конденсаторы предназначены для компенсации индуктивного сопротивления индуктора и установки в целом (компенсации реактивной мощности установки). В цепь включены две группы конденсаторов: конденсаторы первой группы 6 подключены постоянно; а конденсаторы второй группы 5 включают в случае необходимости. В процессе плавки по мере нагрева шихты изменяется ее удельное сопротивление и магнитная проницаемость, что изменяет индуктивное сопротивление установки. Включая или отключая дополнительные конденсаторы добиваются равенства индуктивного и емкостного сопротивлений, т.е. величины coos(ф) установки ,близкой к единице. В качестве источников питания (преобразователей частоты) используют ламповые и машинные генераторы, тиристорные преобразователи. Для питания малых печей («30—50 кг) применяют ламповые генераторы, вырабатывающие ток с частотой от 30 кГц до несколько мегагерц; их мощность изменяется от 0,3 до 1000 кВт. Большая часть промышленных печей с тиглями емкостью 60—100 кг и более питаются от машинных генераторов. Их выпускают мощностью от 12 до 2500 кВт с частотой вырабатываемого тока 0,5; 1; 2,4; 4; 8 и 10 кГц. Соотношение между емкостью печи и мощностью генератора примерно следующее: