Смекни!
smekni.com

Интегрирование уравнений движения материальной точки, находящейся под действием переменных сил (стр. 1 из 2)

«Интегрирование уравнений движения материальной точки, находящейся под действием переменных сил»


Задание: На наклонном участке АВ трубы на груз D, массой m действуют сила тяжести и сила сопротивления R, расстояние от точки А, где V=V0, до точки В, равно L. На горизонтальном участке ВС на груз действует сила тяжести и переменная сила F = F(t).

Дано:

m = 4, кг

V0 = 12, м/с

Q = 12, Н

R = 0,8V2, Н

L = 2.5, м

Fx = -8cos(4t), Н

Определить:

Закон движения груза на участке ВС ( x = f(t) ).

Решение:

1. Пусть груз – материальная точка. Изобразим

и
. Проведем ось Ax и составим дифференциальное уравнение в проекции на эту ось:

Далее находим:

Учитывая, что Vx = V:

или

Выведем:

где g = 10 м/с.

Тогда:

Разделяя переменные и интегрируя:

По Н.У. при x = 0: V = V0, откуда:

;

Получим:

;

Откуда:

и

В результате:

Полагая, что x=L=2.5 и заменяя k и n определим VB:

2. Рассмотрим движение на BC.

Рассмотрим движение ВС (V0 = V). Изобразим

,
, и
.

или
, где

При t=0; V = V0 = VB = 8.29 м/с:

С2 = VB = 8.29 м/с.


К-3 Вариант 18

авр

А

aACv

авр

ac

ацс

EoaaцсC

aB

Woa

aB

О В

Y

aB

X


Дано: ОА=10 АВ=10 АС=5 Woa=2 EOA=6

Найти: Ускорения во всех точках

Va=Woa*OA=20

Va=Wao*Acv=Wab*AB*sin45

Wab=Va/Cva=4/21/2

Vb=Wab*BCv=Wab*AB*cos45=20

Vc=Wab*CCv=21/22*BC/2ctg45=521/2/2

aAbp= Eoa*OA=60

aAцс=WOA2*OA=40

aBцс= WOA2*AB=80

aB= aAbp +aAцс +aABЦС +aABbp

X: 21/2/2*aB= aAцс +aABBP

Y: 21/2/2*aB= aABP +aABЦС

aABBP =========== ==MOI===\KOI0-U=140-40=100

EAB=100/10=10

aB= aAвp +aAцс +aACЦС +aACвp

aACвp = EAB*АВ=50

aACЦС= W2*АС=40

X: 21/2/2*ac= aAцс +aABBP

Y: 21/2/2*ac= aABP +aABЦС

aC=( acx2 +acy2)1/2

«Определение скорости и ускорения точки по заданным уравнениям ее движения».

Задание: По заданным уравнениям движения точки М установить вид ее траектории и

для момента времени t = t1 (c) найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а так же радиус кривизны траектории.

Исходные данные:


Решение:

Для нахождения траектории точки, возведем в квадрат и приравняем левые части уравнений движения, предварительно выделив из них cos и sin соответственно, в результате получим:

- траектория точки в координатной форме.

Траектория представляет из себя окружность радиуса r=3 см.

Найдем проекции скорости и ускорения на оси координат дифференцируя по времени уравнения движения:

По найденным проекциям определяются модуль скорости и модуль ускорения точки:

Найдем модуль касательного ускорения точки по формуле:

-выражает проекцию ускорения точки на направление ее скорости. Знак «+» при
означает, что движение точки ускоренное, направления
и
совпадают, знак «-» значит, что движение замедленное.

Модуль нормального ускорения точки:

; Т.к. радиус кривизны известен, но в качестве проверки применим другую формулу для нахождения модуля нормального ускорения:

Когда найдено нормальное ускорение, радиус кривизны траектории в рассматриваемой точке определяется из выражения:

Результаты вычислений занесем в таблицу (для момента времени t = t1 = 1 c):

Координаты (см) Скорость (см/с) Ускорение (см/с2)
кривизны (см)
x y Vx Vy V Wx Wy W Wn
2.5 5.6 -5.4 3.2 6.3 -12 -8.3 14.6 5.5 13.5 2.922

Найденный радиус кривизны совпадает с определенным из уравнения траектории точки.

На рисунке показано положение точки М в заданный момент времени

Дополнительное задание. Определение скорости и ускорения точки при ее движении по пространственной траектории. Для этого к двум уравнениям движения добавляется 3-е уравнение.