На работы Юнга не обратили внимания, а в печати даже появилась статья, содержащая грубые нападки на него. Корпускулярная теория света по-прежнему казалась непоколебимой.
Французский инженер, ставший впоследствии знаменитым физиком, Огюстен Френепь (1788 – 1827) начал заниматься изучением явлений интерференции и дифракции с 1814 г. Он не знал о работах Юнга, но подобно ему увидел в этих явлениях доказательство волновой теории света.
В 1817 г. Академия наук Франции объявила конкурс на лучшую работу по дифракции света. Френель решил участвовать в этом конкурсе. Он написал работу, в которой изложил результаты своих исследований, и направил ее в Академию наук в 1818 г. В этой работе Френель изложил ряд случаев интерференции света, которые он исследовал. В частности, он описал опыт по интерференции света при прохождении через две соединенные вместе призмы (так называемая бипризма Френеля).
Опыт Френеля ясно показывает случай интерференции от двух источников света. С помощью этого опыта Френель подсчитал длину волны для красного света. При этом она получилась равной длине волны для красного света, определенной из других опытов.
Основное же внимание в своей работе Френель уделил опытам по дифракции света, для которой разработал специальную теорию. Эта теория основывалась на усовершенствованном принципе Гюйгенса, который в последующем стал называться принципом Гюйгенса – Френеля.
По Гюйгенсу, как мы видели выше, волновую поверхность в данный момент времени t можно рассматривать как огибающую всех сферических волн, источниками которых являются все точки волновой поверхности в более ранний, предыдущий момент времени t0.
По Френелю, значение амплитуды световой волны в какой-либо точке пространства в момент времени t можно рассматривать как результат интерференции всех сферических волн, источниками которых являются все точки волновой поверхности в более ранний, предыдущий момент времени t0.
Френель, используя этот принцип, исследовал разные случаи дифракции и рассчитал расположение полос для этих случаев.
Так, он рассмотрел прохождение света через маленькое отверстие и определил, какая картина должна быть видна на экране, поставленном за этим отверстием. По его расчетам, получалось, что на экране будут видны темные и светлые кольца, если свет монохроматический. При этом Френель вычислил радиусы этих колец в зависимости от размеров отверстия, от расстояния источника света до отверстия и расстояния отверстия до экрана, на котором наблюдается дифракционная картина.
Френель описал и другие случаи дифракции света от различных экранов и рассчитал расположение дифракционных полос, исходя из волновой теории. При этом все расчеты Френеля совпадали с результатами, наблюдаемыми на опыте.
Работы, представленные на конкурс, рассматривала специальная комиссия Академии наук. В ее составе были крупнейшие ученые того времени: Араго, Пуассон, Био, Гей-Люссак. Все они держались ньютоновских взглядов на природу света. Естественно, что они недоверчиво отнеслись к работе Френеля. Однако совпадение расчетов Френеля с опытными данными было настолько хорошим, что комиссия не могла отвергнуть работу Френеля и была вынуждена присудить ему премию.
При этом произошел интересный случай. Рассматривая расчеты Френеля, член комиссии Пуассон заметил, что они приводят к парадоксальному результату: согласно Френелю получалось, что в центре тени от круглого экрана должно быть светлое пятно. Однако этого до сих пор никто не наблюдал. Из теории Френеля следовало, что это светлое пятно будет заметно только в том случае, если радиус круглого экрана будет малым. Проделанный опыт подтвердил предсказание теории Френеля, что произвело большое впечатление на членов комиссии.
Итак, комиссия Академии наук присудила премию Френелю за его работу по оптике. Однако это вовсе не значит, что волновая теория была признана правильной. Премия ученому была дана за метод расчета. Что же касалось самих представлений, на основе которых был сделан расчет, т.е. представлений о волновой природе света, то академики, рассматривающие работу Френеля, не согласились с ним.
Они рассуждали примерно так: физические основы теории могут быть неверны, а результаты расчета правильны. Такие случаи история знала. Например, пользуясь теорией Птолемея о строении Вселенной, можно вести расчеты и получать правильные результаты положений небесных светил на небе, однако по существу она неверна.
Нужно сказать в защиту академиков, что, несмотря на блестящие результаты, полученные Френелем, в его теории был определенный изъян. Дело в том, что, кроме интерференции и дифракции, физики уже исследовали поляризацию света. Но теория Френеля вопросов поляризации света не касалась. Более того, казалось, что она не в состоянии их объяснить.
Начиная с XIX века взгляды ученых-оптиков постепенно склоняются в пользу волновой теории света. Уже известные кольца Ньютона, цвета тонких пленок и ряд эффектов, говорящих о неаддитивности освещенности от нескольких источников, весьма смутно объяснялись корпускулярной теорией. В первую очередь благодаря работам Томаса Юнга появляется теория интерференции как явления перераспределения световой энергии в пространстве. При соблюдении некоторых условий (когерентность источников) суммарная интенсивность в данной точке может оказаться вдвое больше суммы интенсивностей от двух одинаковых источников света, причем в соседней точке она может оказаться нулевой. Ставший классическим интерференционный опыт Юнга с двумя щелями позволил впервые оценить длину световой волны.
В данном реферате вкратце описаны такие моменты, относящиеся к интерференции света, как развитие волновой теории, опыты Ньютона и Френеля в области интерференции, а также опыты Юнга.
Литература:
1. Спасский Б.И. Физика в ее развитии. – М.: Просвещение, 1979;
2. Дягилев Ф.М. Из истории физики и жизни ее творцов. – М.: Просвещение, 1986;
3. Вавилов С.И. Исаак Ньютон. Издательство Академии наук СССР, 1960г., 294с.