Смекни!
smekni.com

Интерференция света (стр. 2 из 3)

где 2

- апертура интерференции , λ – длина волны.

11. Контрастность интерференционной картины определяется из формулы:

где Emax, Emin – освещённости экрана в местах максимумов и минимумов картины, т.е. в центрах светлых и тёмных полос, B=λD/2l – ширина интерференционной полосы, 2b – размеры источника. Величина v называется видимостью полос. Зависимость v=f(2b/B) показана на рис.2.


2b/B

1 2 3 4 5

рис2.

12. Интерференционная картина в немонохроматическом свете, длины волн которого лежат в интервале от λ до

, полностью смазывается, когда с интерференционными максимумами m-го порядка для излучения с длиной волны
совпадают максимумы (m+1)-го порядка для излучения с длиной волны λ:

Для наблюдения интерференции порядка m должно выполняться условие:

Чем больше порядок интерференции m, который необходимо наблюдать, тем монохроматичнее должен быть свет. Даже для света с линейчатым спектром

не может быть меньше естественной ширины спектральной линии
. Обычно из-за доплеровского и ударного уширения
.

2. Оптическая длина пути

1. Оптической длиной пути называется произведение геометрической длины d пути световой волны в данной среде на абсолютный показатель преломления этой среды n.

s=nd.

2. Разность фаз

двух когерентных волн от одного источника, одна из которых проходит длину пути
в среде с абсолютным показателем преломления
, а другая – длину пути
в среде с абсолютным показателем преломления
:

где

,
, λ – длина волны света в вакууме.

3. Если оптические длины пути двух лучей равны,

, то такие пути называются таутохронными (не вносящими разности фаз). В оптических системах, дающих стигматические изображения источника света, условию таутохронности удовлетворяют все пути лучей, выходящих из одной и той же точки источника и собирающихся в соответствующей ей точке изображения.

4. Величина

называется оптической разностью хода двух лучей. Разность хода
связана с разностью фаз
:

.

5. При

разность фаз
; удлинению (или укорочению) оптической длины пути одной из волн относительно другой на
соответствует запаздывание (или опережение) первой волны на π. При суперпозиции таких волн их амплитуды вычитаются друг от друга, и в случае равенства амплитуд обеих волн амплитуда результирующей волны равна нулю.

6. Наблюдение интерференции возможно лишь при не слишком больших разностях хода

. Если
(τ – средняя продолжительность одного акта излучения света атомом источника, с – скорость света в вакууме, а τс – средняя продолжительность цуга волн в вакууме), то накладывающиеся волны заведомо некогерентны и не интерферируют. Условия наблюдения интерференции при оптической разности хода

т.е. для осуществления интерференции при больших значениях

необходима сильная монохроматизация света.

3. Интерференция в тонких плёнках

1. При наблюдении интерференции монохроматического света, отражённого в вакуум от плоскопараллельной пластинки (рис.3.), оптическая разность хода интерферирующих лучей

=n(AD+DC)-BC+λ/2=

=

где h – толщина пластинки, n – её абсолютный показатель преломления, i – угол падания лучей на пластинку, r – угол преломления лучей в ластинке. Дополнительная разность хода

связана с отражением света от передней поверхности пластинки (оптически более плотной среды), т.е. с изменением при отражении фазы волны на π.

S S

O

B O

i i

A C

h

rr

D

Рис.3.

2. Условия максимумов и минимумов для интерференционной картины, образуемой когерентными волнами, отражёнными от обеих поверхностей пластинки:

Здесь k=2m, где m – целое, для минимумов и k=2m+1 для максимумов. Если отражение от обеих поверхностей пластинки происходят с потерями λ./2 (или без них), то интерференционная картина смещается на полполосы, т.е. значения k=2m соответствуют интерференционным максимумам, а k=2m+1 – минимумам.

3. При освещении плоскопараллельной пластинки параллельным пучком лучей белого света пластинка приобретает в отражённом свете цветную окраску. В соответствии с условием п.6. интерференцию в белом свете можно наблюдать лишь на очень тонких пластинках (плёнках), толщина которых не превосходит 0.01 мм. В монохроматическом свете можно наблюдать интерференцию и на значительно более толстых пластинках.

4. Если параллельный или почти параллельный

пучок лучей монохроматического света падает на плёнку, толщина h которой неодинакова в разных местах, то в отражённом свете на верхнеё поверхности плёнки видны тёмные и светлые интерференционные полосы. Эти полосы называют полосами равной толщины , так как каждая из них проходит через точки с одинаковыми значениями h. Полосы равной толщины, локализованные на поверхности плёнки, можно наблюдать также и на экране, если на него спроецировать верхнюю поверхность плёнки с помощью собирающей линзы. В белом свете наблюдается система цветных интерференционных полос равной толщины.

5. При интерференции на прозрачном клине полосы равной толщине параллельной ребру клина. Ширина интерференционных полос при угле падения i=0

где

- угол при вершине клина (
, n – абсолютный показатель преломления вещества клина.

В случае протяжённого источника света интерференционная картина наблюдается только от той части клина, вблизи его вершины, для которой

, где i – угол падения,
- угол, под которым виден протяжённый источник из точки клина, соответствующий данном h.

6. При интерференции света в воздушном зазоре между плоским чёрным зеркалом и плотно прижатой к нему плоско-выпуклой линзой (рис.4), свет падает нормально на плоскую поверхность линзы, параллельную плоскости чёрного зеркала.

R

P

Рис.4.

Наблюдается система полос равной толщине воздушного зазора, имеющих вид центрических колец (кольца Ньютона). Центры колец совпадают с точкой соприкосновения линзы и зеркала. В отражённом монохроматическом свете радиусы светлых и тёмных колец равны: