Человечество может получить достаточное количество электроэнергии, не вырабатывая ее на ГЭС, АЭС или ТЭС, работающих на угле, нефти, природном газе и горючих сланцах. Можно необходимую энергию получать, используя альтернативные источники энергии, например ветровые, приливные, геотермальные, солнечные и волновые электростанции или ТЭС, работающие на биомассе.
Под альтернативной энергией понимаются биогаз, биодизель и другие углеводороды, полученные в результате переработки биомассы. Ресурсы данных источников колоссальны, но ограниченны. Альтернативная энергетика удовлетворить потребность человечества может только при экономии энергии. Например, в Индии правительство на федеральном и региональном уровнях выделяет значительные субсидии для реализации программ по установке усовершенствованных печей. К концу 2000 года в стране работало 32,6 миллиона таких печей. Использование улучшенных печей спасло от уничтожения более 13 миллионов тонн древесины в год. А если усовершенствовать печи по всему миру? Использование биомассы в энергетических целях дает большие перспективы: можно использовать отходы сельского хозяйства (получение биогаза в животноводстве, использование на ТЭС отходов растениеводства), а также получать топливо (выращивание энергетических лесов).
Биогаз. Всего в мире в настоящее время используется или разрабатывается около шестидесяти разновидностей технологий получения биогаза. Наиболее распространенный метод - анаэробное сбраживание в метатанках, или анаэробных колоннах. Биомасса (экскременты сельскохозяйственных животных; солома и прочие отходы растениеводства) сбраживаются в результате жизнедеятельности метанобактерий, в результате чего образуются биогаз и побочные продукты (витамин В, удобрение).
Потенциал: Россия ежегодно накапливает до 300 миллионов тонн в сухом эквиваленте органических отходов.250 млн. т. в сельскохозяйственном производстве и 50 млн. т в виде бытового мусора. Эти отходы являются сырьем для производства биогаза. Потенциальный объем ежегодно получаемого биогаза может составить 90 млрд. м3.
Биодизель - это экологически чистое топливо для дизельных двигателей, получаемое путем химической обработки растительного масла или животных жиров, которое может служить добавкой к дизельному топливу или полностью заменять его. Биодизель, как показали опыты, при попадании в воду не причиняет вреда растениям и животным. Кроме того, он подвергается практически полному биологическому распаду: в почве или в воде микроорганизмы за 28 дней перерабатывают 99 процентов биодизеля, что позволяет говорить о минимизации загрязнения рек и озер. Производство биодизеля позволяет ввести в оборот не используемые сельскохозяйственные земли, создать новые рабочие места в сельском хозяйстве, машиностроении, строительстве и т.д. Например, в России с 1995 по 2005 год посевные площади сократились на 25,06 миллиона гектаров.
Для создания плантаций энергетических лесов в умеренной климатической зоне наиболее перспективны разновидности быстрорастущих сортов тополя (волосистоплодного и канадского) и ивы (корзиночной и козьей), а в южной части страны - акации и эвкалипта. Посадка энергетических плантаций ведется черенками или саженцами квадратно-гнездовым способом или в шахматном порядке с различной шириной междурядий (от 0,8 до 2 метров). Для тополя плотность посадок обычно составляет 3 5 тысяч экземпляров на 1 гектар, однако общих рекомендаций пока не выработано. Период ротации составляет 6 7 лет. Уход за плантацией заключается в бороновании междурядий, внесении удобрений и орошении в засушливые периоды. Плантации могут быть монокультурными и комбинированными. Последние заслуживают особого внимания, поскольку способствуют диверсификации посевов и посадок различных культур, что должно повысить устойчивость к заболеваниям и вредителям, тем самым снижая потребность в ядохимикатах. Кроме того, подобные плантации рациональнее используют поступающую солнечную энергию для формирования биомассы.
Принцип комбинированных посевов и посадок различных культур на одном участке хорошо известен в тропиках, где так называемые "огороды" дают урожаи различных культур на протяжении нескольких лет подряд без применения удобрений и ядохимикатов. Различные варианты комбинированных посевов и посадок разнообразных культур, включая энергетические, уже испытаны в одном из графств Великобритании. В посадках используют тополь и ячмень в междурядьях, либо тополь, ясень, ольху с подсолнечником и люпином в междурядьях, или с горохом полевым, ячменем, клевером, зелеными культурами и т.д. Пример комбинированного использования энергетических лесов известен в Греции, где на плантациях шелковицы выкармливают шелковичного червя. Зимой годовой прирост ветвей обрезают и используют как биомассу. На европейской территории России, где до 80 процентов электроэнергии вырабатывается на ТЭЦ, многие из которых расположены в лесных районах, безусловно, имеются возможности для создания плантаций энергетических лесов либо частичного использования местных лесных ресурсов (отходы заготовки и переработки древесины).
Количество энергии, которое можно получить с энергетической плантации при урожайности 15 тонн сухой биомассы с гектара в год (теплотворная способность 15 МДж/кг), составляет 225 ГДж/га. При КПД газотурбинной электростанции 40 процентов, один гектар энергетической плантации может обеспечить экологически чистым топливом производство 252 МВт-ч электроэнергии в год. В настоящее время рассматриваются различные схемы использования энергетических лесов с короткими севооборотами (как правило, предлагаются севообороты с шестилетним циклом). При этом энергоотдача (отношение количества энергии, которое получают от системы, к энергетическим затратам на ее создание и эксплуатацию, включая все косвенные расходы) таких энергетических плантаций колеблется между тремя и четырьмя, что оказывается вполне приемлемой величиной, если учесть, что энергоотдача для тепловых станций, работающих на угле, составляет четыре-пять единиц.
Растительное масло имеет большую теплотворную способность (38 МДж). Кроме того, растительное масло можно переработать на биодизель. А вот сколько масла можно получить с гектара пашни, засеянного масличными культурами?
Конечно, использование пищевых продуктов (в данном случае растительное масло) не является выходом из энергетической проблемы. Но данный ресурс рассматривать вполне целесообразно.
Недавно Джоржем Хубером и двумя его студентами из университета штата Массачусетс был разработан метод прямой конверсии биомассы в топливо. Они опубликовали в журнале ChemSusChem статью с описанием метода селективного каталитического пиролиза целлюлозы, результатом которого является образование ароматических соединений (нафталин, толуол, этилбензол и др.), среди побочных продуктов - твердый углеродный материал, СО, СО2 и вода.
Реакцию проводили при 600 C на цеолитном катализаторе ZSM5. Процесс завершался всего за две минуты. Исходным реагентом служил очищенный порошок целлюлозы.
Представления о механизме процесса включают несколько элементарных реакций - разложение целлюлозы с образованием органических соединений, содержащих кислород, затем реакции этих соединений внутри пор катализатора, где происходит дегидрирование, декарбонилирование, олигомеризация и другие химические превращения.
Эксперты высоко оценили новую работу, хотя сами авторы признают, что это лишь первый шаг к эффективному преобразованию биомассы в моторное топливо. Первым делом предстоит изучить возможность использования сырой биомассы, а не порошка целлюлозы. Далее, основными продуктами пиролиза являются ароматические соединения, а их, согласно требованиям правительственной организации США - Агентства по охране окружающей среды - не должно быть больше 25% в общей массе бензина. Значит, придется ограничиться добавкой полученной ароматики к алканам, либо проводить дополнительную реакцию гидрирования.
Тем не менее, несмотря на все эти ограничения, процесс д-ра Хубера привлечет большое внимание коллег и даст толчок к дальнейшим исследованиям в области экологически чистой энергетики, не приводящей к росту содержания углекислого газа в атмосфере.
Специальное выращивание биомассы в виде микроскопических водорослей с последующим ее перебраживанием в спирт или метан позволяет создать искусственный аналог процесса образования органических топлив, превосходящий по скорости естественные процессы в миллионы раз. Соотношение между величиной первичной биологической продукции и веществом, захороненным и сохранившимся в морских осадках, составляет 1000:1.
Создание специальных условий может многократно ускорить образование топлива. КПД фотосинтеза благодаря оптимизации питания биогенными элементами, температуре и перемешиванию может быть увеличен от 1,1 до 10 процентов. В процесс переработки биомассы в газ и нефть может быть включено все вещество, а не 0,001 его часть, как происходит в природе, то есть естественный процесс образования углеводородов может быть значительно интенсифицирован. С этой точки зрения, большой интерес вызывает одноклеточная водоросль ботриококкус, содержание углеводородов в которой достигает 80 процентов от сухого веса.
Углеводороды локализуются в основном на наружной поверхности клеток, и, следовательно, их можно удалять простым механическим способом или, например, применяя центрифуги, причем клетки при этом не разрушаются и их можно возвращать обратно в культиватор. Состав углеводородов, продуцируемых ботриококкусом, позволяет использовать их в качестве источника энергии или как сырье в нефтехимической промышленности (непосредственно или после неполного крекинга). После гидрокрекинга на выходе получается 65 процентов газолина, 15 процентов авиационного топлива, 3 процента остаточных масел.