Смекни!
smekni.com

Исследование двоичных счетчиков (стр. 2 из 3)


Счет
Q3 Q2 Q1 Q0 Счет Q3 Q2 Q1 Q0
0 0 0 0 0 8 1 0 0 0
1 0 0 0 1 9 1 0 0 1
2 0 0 1 0 10 1 0 1 0
3 0 0 1 1 11 1 0 1 1
4 0 1 0 0 12 1 1 0 0
5 0 1 0 1 13 1 1 0 1
6 0 1 1 0 14 1 1 1 0
7 0 1 1 1 15 1 1 1 1

Рассмотренные счетчики имеют коэффициент счета Ксч= 5 и Ксч= 13 т.е. выходной сигнал счетчика будет после 5-го или 13-го импульса (выходным сигналом является перепад с "1" на "0") – переход с "1" на "0" сигнала Q2.

Если нужен не переход, а импульс, то его можно получить с помощью схем формирования импульсов или других схем. Одну из таких схем рассмотрим далее на базе К155ИЕ5, логическая схема которого представлена на рисунке:

0 0 Режим
0 0 Счет
0 1
1 0
1 1 Прекращение счета Q1=Q2=Q3=Q4=0

Когда счетчик используется в качестве делителя частоты, то, немного усложнив схему, можно получить на выходе кратковременные импульсы вместо обычного перепада напряжения.

Схема формирования кратковременного импульса на выходе МС К155ИЕ5 (Кдел=14) представлена на рисунке.

Установка нуля счетчика происходит в этом случае через триггер ДД4, ДД5. С приходом следующего входного импульса триггер возвращается в исходное состояние.

Реверсивный счетчик.

Импульсы, поступающие для счета, попадают на вход 1-го триггера, а выходят с него по двум каналам: при прямом счете с прямого выхода, а при обратном – с инверсного. Для того, чтобы управлять путями движения, служат элементу И-НЕ. Такие ячейки ставятся после каждого триггера. Управляющим сигналом для прямого и обратного счета являются логические нули.

Так, если на входах элементов ДД4.1 и ДД4.4 нули, то они заблокированы, а логические единицы на их выходах никакого влияния на работу элементов ДД4.2 и ДД5.1 не оказывают.

Аналогично с шиной +1. Происходит движение импульса при прямом счете. Пусть на шине –1 высокий потенциал – логическая "1", а на +1 – логический "0", исходное состояние счетчика 000. Первый импульс срезом переводит младший разряд в "1" (т.е. на выходе 8 ДД1 будет "1"). На выходе ДД4.1 появится "0", а на выходе ДД4.2 – высокий потенциал. На входе ДД2 высокий потенциал изменения состояния ДД2 не вызовет, т.е. после 1-го импульса счетчик будет в состоянии 001. Следующим импульсом ДД1 перебросится в "0", ДД4.1- в "1", ДД4.2 – в "0" и ДД2 – в "1", ДД4.4 – в "0", ДД5.1 – в "1", т.е. счетчик будет в состоянии 010 и т.д.

Аналогично при вычитании: на шине –1 – логический "0", на шине +1 – логическая "1", на выходах ДД4.1 и ДД4.4 – логическая "1", исходное состояние счетчика 111. Импульсы проходят по нижним ячейкам.

Среди большого многообразия МС счетчиков можно выделить 155ИЕ6 и 155ИЕ7 – двоично-десятичный и двоичный четырех разрядные реверсные счетчики.

Входы С1 и С2 для подачи счетных импульсов, R – для установки в "0", S – для предварительной записи информации (S="0") установленной триггерами по спадам Р1 на С1 след МС при прямом счете (при переходе из 9 в 0), "перенос" Р2 – при обратном счете ( при переходе из 0 в 9), выход "займа".

Кольцевой счетчик.

Кольцевой счетчик представляет собой регистр, у которого информационный вход триггеров D-типа (или оба входа JK- или RS-триггеров в случае их применения) соединен с выходом (или с обоими выходами) последней ступени, образуя замкнутое кольцо.

Если в один из разрядов регистра ввести логическую единицу или ноль, то эта единица или ноль с каждым тактовым импульсом будет переходить от триггера к триггеру с циклом, равным числу триггеров. Поскольку состояние всех триггеров регистра, за исключением одного, одинаково, активное состояние этого разряда однозначно характеризует число входных тактовых импульсов с учетом, естественно, числа циклов.

На рис. 5 показана логическая структура пятиразрядного кольцевого счетчика.

На рис. 6 показана его временная диаграмма.

Кроме RS (JK)-триггеров в таких схемах применяют также и D-триггеры. В последнем случае инверсные выходы триггеров не используются. До начала работы наряду с вводом логической 1 в первый разряд остальные триггеры устанавливаются в ноль, поскольку состояние, которое они примут в момент включения питания, непредсказуемо.

В отличие от двоичных счетчиков преобразование последовательности импульсов в требуемый код (например, восьмеричный или десятичный) здесь обеспечивается без помощи дешифратора, что является преимуществом кольцевых счетчиков. Каждый из выходов приходит в активное состояние с частотой fвых=fвх/m, где m-число триггеров, т.е. коэффициент счета кольцевого счетчика численно равен числу триггеров. Поскольку кольцевые счетчики не содержат внешних логических элементов, они обладают большим быстродействием.

Кольцевым счетчикам свойственно два недостатка.

Первый – повышенный расход триггеров и соответственно большие экономические и энергетические затраты. Так, например, для кольцевого счетчика с коэффициентом счета 16 потребуется 16 триггеров, в то время как для двоичного счетчика достаточно четырех.

Второй – вероятность сбоев. Если под действием помех произойдет ошибочный переброс отдельных триггеров, то такое состояние, раз возникнув, само не исправится. Этот недостаток устраняют введением корректирующей логической цепи, следящей за состоянием триггеров. При появлении ложных сигналов на вход подаются импульсы, исправляющие положение в новом цикле.


2. ЦЕЛЬ РАБОТЫ

2.1 Изучение работы двоичных счетчиков, экспериментальное исследование графа переходов счетчика

2.2 Исследование быстродействия счетчиков и способов его повышения

2.3 Изучение способов построения счетчиков с заданным графом переходов.

3. ДОМАШНЕЕ ЗАДАНИЕ

3.1 Ознакомиться с заданием на проведение эксперимента

3.2 Изучить по литературе и по теоретической части двоичные счетчики

3.3 Изобразить в тетради для отчетов схемы изучаемых счетчиков

(рис. 1, 2, 3,4,5,7,8,9,10) и развернутую принципиальную схему счетчика, соответствующую рис. 11.

3.4 Продумайте методику исследования времени перехода десятичного счетчика из состояния 1001 в состояние 0000.

4. ЗАДАНИЕ НА ПРОВЕДЕНИЕ ЭКСПЕРИМЕНТА

4.1 Собрать двоичный асинхронный счетчик с последовательным переносом (рис. 7). Экспериментально исследовать граф перехода счетчика. Определить время перехода счетчика из состояния 1111 в состояние 0000.

Для этого используется схема, показанная на рис. 7. Последовательность импульсов с выхода А рециркуляционного генератора подается на шину установки счетчика в состояние 1111. Эта установка является инверсной (в соответствии со свойствами триггера 155ТВ1) и производится уровнем «0» (рис. 7, б).

При наличии сигнала установки ( А = 0 ) все триггеры счетчика заблокированы и не реагируют на счетные импульсы шины С.

Для нормальной работы счетчика необходимо убрать сигнал установки 1111, т. е. сделать А = 1.

Тогда, через некоторое время tз, обусловленное инерционностью триггеров, счетчик восстановит свою работоспособность. Поэтому сигнал запуска счетчика С снимается с инверсного входа рециркуляционного генератора, что обеспечивает задержку запускающего перепада 1 – 0 относительно момента снятия сигнала установки А (момент начала «разблокирования» счетчика). Величина этой задержки tз зависит от емкости, подключенной к шине С (величина емкости должна быть не менее 40 пФ – в работе используется входная емкость осциллографа). При этом под воздействием перепада 1 – 0 на шине С счетчик начинает совершать переход в состояние 0000.

Момент окончания перехода регистрируется по изменению сигнала на выходе дешифратора DC (c инверсным входом) состояния 0000, выполненного на схеме «И-НЕ».

Инерционность дешифратора будет увеличивать регистрируемое время перехода на величину Δt.

Регистрация времени осуществляется с помощью двухлучевого осциллографа. Последовательно отсоединяя сигналы от входов схемы дешифратора, определить зависимость времени переходов от числа разрядов счетчика.