Зависимость интеграла обмена от отношения диаметра атома к диаметру незаполненной оболочки представлена на рисунке 11 и таблице 2.
Таблица 2 - Зависимость магнитных свойств от отношения диаметра атома к диаметру незаполненной его оболочки
Элемент | Диаметр атома a, А | Диаметр незаполненного слоя d, А | Отношение а/d | Примечание |
Марганец | 2,52 | 1,71 | 1,47 | Не ферромагнитен |
Железо | 2,50 | 1,53 | 1,63 | Ферромагнитен |
Кобальт | 2,51 | 1,38 | 1,82 | Ферромагнитен |
Никель | 2,50 | 1,27 | 1,97 | Ферромагнитен |
Платина | 2,77 | 2,25 | 1,23 | Не ферромагнитна |
Гадолиний | 3,35 | 1,08 | 3,10 | Ферромагнитен |
Рисунок 11 - Зависимость интеграла обмена от отношения диаметра атома к диаметру незаполненной оболочки.
Итак, можно сделать следующие выводы:
Элементарными носителями ферромагнетизма являются электронные спины.
Ферромагнетизм присущ тем элементам, в которых:
а) имеются внутренние незаполненные слои;
б) отношение диаметра атома в кристаллической решетке к диаметру незаполненного слоя больше 1,5 (интеграл обмена положителен)
Следует также отметить, что ферромагнетизм возможен лишь в кристаллическом состоянии ниже некоторой температуры, характерной для каждого ферромагнетика [7, с. 32-41].
1.7 Магнитные фазовые переходы
Ферромагнетизм существует не при всех температурах. При повышении температуры собственный спонтанный магнитный момент тела уменьшается, а при некоторой температуре Т
, называемой температурой Кюри, обращается в нуль (конечно, если отсутсвует магнитное поле, т.е. Н=0). Выше температуры Кюри все ферромагнетики – парамагнетики, но не все парамагнетики при низкой температуре – ферромагнетики. Значение температуры Кюри Т и плотности спонтанного магнитного момента М (при Т → 0) у разных материалов различны (таблица 3).Таблица 3 - Значение Т
и М для разных материаловВещество | Fe | Co | Ni |
М , (эрг/Тс) | 1735 | 1445 | 509 |
Т , (К) | 1043 | 1403 | 631 |
Температурная зависимость плотности спонтанного магнитного момента М
(Т) никеля показана на рисунке 12 [5, с. 99].Рисунок 12 - Зависимость спонтанного магнитного момента Ni от температуры.
В учении о магнитоупорядоченных веществах важную роль играют представления о магнитных фазовых переходах. Различают магнитные переходы 1-го и 2-го рода. Переходы 1-го рода характеризуются непрерывным изменением термодинамических функций, например свободной энергии, или термодинамического потенциала системы Ф (Т, Р, Н), где Т, Р, и Н – внешние термодинамические параметры, но испытывают скачок первые производные Ф´ (Т, Р, Н). Поскольку
(
Ф/ Т)Р, Н = Qи
(
Ф/ Н)Т, Р = I,то при переходе первого рода существуют скачки скрытой теплоты Q и намагниченности I.
Переходы 2-го рода характеризуются непрерывным изменением функций Ф (Т, Р, Н) и Ф´ (Т, Р, Н), однако скачки испытывают вторые производные Ф´´ (Т, Р, Н); это означает, что существуют скачки в точке перехода 2-го рода теплоемкости (
Q/ T)Р, Н = CР, Н и температурного коэффициента намагниченности ( I/ h)Т, Р. Рассматриваемые переходы являются магнитными переходами типа порядок – беспорядок (например, ферромагнетизм – парамагнетизм). На рисунке 13, б показано схематическое изменение самопроизвольной намагниченности I , при магнитных переходах 2-го рода типа порядок – беспорядок. В большинстве магнитоупорядоченных веществ в точках Кюри и Нееля возникают именно такие переходы.Рисунок 13 - Магнитные фазовые переходы 1-го (а) и 2-го (б) рода.
Согласно Ландау магнитный переход 2-го рода можно приближенно описать с помощью разложения энергии ферромагнетика в ряд по четным степеням параметра магнитного упорядочения, за который можно принять намагниченность I.Для случая ферромагнетика имеем
W = W0 + aI2 + bI4 – IH (15)
где W0 – аддитивная постоянная,
а и b – некоторые коэффициенты (знак минус перед энергией поля IH означает, что магнитная система находится в стабильном состоянии). Из условия равновесия магнитной системы
W/ I = 0 получаем уравнение состояния ферромагнетика вблизи точки Кюри Тс.αI + βI3 = H (16)
где α = 2а, β = 4b – новые коэффициенты, зависящие от Т и Р; в частности, можно коэффициент α разложить в ряд по разности Т – Т
:α =αТс (Т – Т
) (17)В отсутствии магнитного поля I = Is. Из (16) и (17) имеем
I
= - (αТc / β) (Т –Т ) (18)При достижении температуры Т = Т
намагниченность Is = 0 и, следовательно, α = 0. Таким образом, равенство α = 0 может быть использовано для определения температуры Кюри. Последнее уравнение можно записать в виде:Is = A (Т –Т
)1/2 (19)где
А = (αТс /b)1/2
При Т = Т
, т.е. a = 0, из (16) имеем:I = ВН 1/3 (20)
где В = (1/b)1/3. Присоединяя сюда соотношение
χ = С (Т – Т
)-1 (21)(закон Кюри – Вейсса, который справедлив при Т ≥ Т
), мы получаем три уравнения для описания магнитного перехода в окрестности точки Кюри.Однако эти уравнения весьма приближенны, особенно в узкой окрестности точки Кюри, т.е. в области |τ| =(Т – Т
) / Т ≤ 10-4. В этой области возникают так называемые флуктуации магнитного порядка – критическое состояние вещества. Влияние этих флуктуаций в самой точке Т приводит к корреляции спинов, что должно быть учтено с помощью введения новых показателей, степеней в систему уравнений (19) – (21), а именно:I
= A (Т –Т )b, I = ВН 1/d, χ =С(Т –Т ) (22)где b, d и g - так называемые критические индексы магнитного перехода. Все термодинамические функции вблизи перехода испытывают резкие изменения (сингулярности), и поэтому эти индексы должны быть более высокими, чем дает термодинамика Ландау.
Априори можно утверждать, что между критическими индексами должна существовать количественная связь, так как все процессы, протекающие в критической области, взаимосвязаны. Оказывается, связь между ними довольно проста (закон подобия):
g = b (d - 1) (23)
Измерениями для Ni и некоторых ферритов установлено, что g = 1,3; b = 0,38; d = 4,42. Подставляя эти значения в закон подобия, можно убедиться, что этот закон удовлетворяется.
Отметим, что уравнение I = ВН 1/d является аналогом уравнения состояния жидкости:
r - rкр = а (Р – Ркр)1/d
где r - плотность, Р – давление; вблизи точки перехода (критической точки) r = rкр, Р = Ркр. Измерения показали, что вблизи критической точки (Т = Ткр) критический индекс d для системы жидкость – газ равен 4,2; т.е. приблизительно такой, как и для системы ферромагнетик – парамагнетик. Из этого следует, что результаты по изучению механизма фазовых переходов в магнитных веществах можно переносить на более сложные переходы, происходящие в твердых и жидких телах. Поэтому физики проявляют такой большой интерес к исследованию магнитных фазовых переходов.