Исчерпав возможности Эдинбургского университета за 3 года, Максвелл в 1850 году переводится в Кембридж, в Тринити-колледж, где в своё время учился Ньютон.
Максвелл, который обладал уже огромным запасом знаний, правда, находящихся пока в беспорядке, твёрдо решил посвятить себя физике. Он начинает изучать " Экспериментальные исследования по электричеству" Фарадея. " Я решил, — писал Джеймс, — не читать ни одного математического труда из этой области, пока не изучу основательно это сочинение".
В 1854 году Максвелл успешно выдержал выпускной экзамен, заняв второе место, и был оставлен в Тринити-колледже для подготовки к профессорскому званию. Здесь он читает лекции по гидравлике и оптике, занимается исследованиями по теории.
В 1855 - 1856 гг. Максвелл закончил свою первую работу по электромагнетизму " О фарадеевых силовых линиях" и вместе с письмом отправил своему кумиру - Фарадею. Фарадей поразился силе таланта молодого учёного, его владению математикой и, глубоко тронутый вниманием, писал Максвеллу: "Ваша работа приятна мне и даёт мне большую поддержку. Сначала я даже испугался, когда увидел такую математическую силу, применённую к вопросу, но потом изумился, видя, что вопрос выдерживает это столь хорошо".
Максвелл берёт под защиту метод Фарадея, его идею близкодействия поля. Он опровергает версию о якобы "антиматематичности фарадеевского мышления". "Я убеждён, что его идеи могут быть выражены в виде обычных математических формул и эти формулы вполне сравнимы с формулами профессиональных математиков. Он сообщил своей концепцией силовых линий такую ясность и точность, каковые математикам удалось сообщить своими формулами", — писал Максвелл.
Сразу после открытия Фарадеем закона электромагнитной индукции учёные стремились придать ему строгую количественную формулу. Сейчас трудно представить себе те мучительные усилия, которые потребовались для формулировки этого закона на языке концепции действия на расстоянии. И в конце концов были получены (Нейманом и Вебером) весьма и весьма сложные формулы, неясные по своему физическому содержанию, но всё же способные количественно описывать опытные факты. В настоящее время их можно найти только в книгах по истории физики.
Истинный смысл закона электромагнитной индукции был найден Максвеллом. Он же предал закону ту простоту и ясную математическую форму, базирующуюся на представлении о поле, которую знает сейчас весь мир.
Попробуем представить себе, с помощью какого рода рассуждений Максвелл смог усмотреть в явлении электромагнитной индукции новое фундаментальное свойство электромагнитного поля.
Допустим, перед нами обыкновенный трансформатор. Включив первичную обмотку в сеть, мы немедленно получим ток в соседней вторичной обмотке, если только она замкнута. Электроны, находящиеся в проволоке обмотки, придут в движение.
Но ведь электронам закон электромагнитной индукции не известен. Короче говоря, какие силы приводят электроны в движение?
Само поле, пронизывающее катушку, этого сделать не может. Ведь магнитное поле действует исключительно на движущиеся заряды (этим-то оно и отличается от электрического), а проводник с находящимися в нём электронами неподвижен. Что же тогда действует?
Кроме магнитного, на заряды, мы знаем, действует ещё электрическое поле. Причём оно-то как раз может действовать и на неподвижные заряды. Это его главное свойство. Но ведь то поле, о котором шла речь (электрическое поле), создаётся непосредственно электрическими зарядами, а индукционный ток появляется под действием переменного магнитного поля. Уж не замешаны ли здесь какие-то новые физические поля, коль скоро идея близкодействия считается незыблемой?
Не будем спешить с выводами и при первом же затруднении искать спасения в придумывании новых полей, как в своё время вывод из всех трудностей видели во введении новых сил. Ведь у нас нет никакой гарантии, что все главные свойства магнитного и электрического полей известны. В законах Кулона и Ампера, заключающих в себе основную информацию о свойствах поля, фигурируют постоянные поля.
А что, если у переменных полей появляются новые свойства? Будем надеяться, что идея единства электрических и магнитных явлений, плодотворная до сих пор, не откажет и дальше.
Тогда остаётся единственная возможность: предположить, что электроны ускоряются во вторичной обмотке электрическим полем, и это поле порождается переменным магнитным полем непосредственно в пустом пространстве. Тем самым утверждается новое фундаментальное свойство магнитного поля: изменяясь во времени, оно продолжает вокруг себя электрическое поле.
Теперь явление электромагнитной индукции предстаёт перед нами в совершенно новом свете. Главное - это процесс в пустом пространстве: рождение магнитным полем электрического. Есть ли проводящий контур (катушка) или нет, это не меняет существа дела. Проводник с его запасом свободных электронов - просто индикатор (регистратор) возникающего электрического поля: оно приводит в движение электроны в проводнике и тем самым обнаруживает себя.
Сущность явления электромагнитной индукции совсем не в появлении индукционного тока, а в возникновении электрического поля.
В 1860 году Максвелл покинул Абердин, получив кафедру в Кингс- колледже в ЛондоЭском университете. Здесь впервые Максвелл встретился с Фарадеем. Именно в лондонский период учёный развивает свою теорию поля. Ей посвящается ряд работ: "О физических линиях силы" (1861-1862), "Динамическая теория поля" (1864-1865). Вот в этой последней работе и дана система знаменитых уравнений.
Теория Максвелла, по словам Герца, - это уравнения Максвелла. Суть этой теории сводилась к тому, что изменяющееся магнитное поле создаёт не только в окружающих телах, но и в вакууме вихревое электрическое поле, а оно, в свою очередь, вызывает появление магнитного поля. "Теория, которую я предлагаю, - пишет Максвелл, - может быть названа теорией электромагнитного поля, потому что она имеет дело с пространством, окружающим электрические или динамические тела, и она может быть названа также динамической теорией, поскольку она допускает, что в этом пространстве имеется материя, находящаяся в движении, посредством которой и производится наблюдаемые электромагнитные явления".
Теория электромагнитного поля Максвелла знаменовала собой начала нового этапа в физике. Именно на этом этапе развития физики поле стало реальностью, материальным носителем взаимодействия. Мир постепенно стал представляться электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля. Большинство физиков исключительно высоко оценили теорию Максвелла. Пуанкаре считал её "Вершиной математической мысли". "Самым увлекательным предметом во время моего обучения была теория Максвелла. Переход от сил дальнодействия к полям, как основным величинам, делал эту теорию революционной", - писал А. Эйнштейн.
Анализируя свои уравнения, Максвелл пришёл к выводу, что должны существовать электромагнитные волны, причём скорость их распространения должна равняться скорости света. Отсюда был сделан совершенно новый вывод: свет есть разновидность электромагнитных волн.
Так, по словам Луи де Бройля, Максвелл "сделал всю оптику частной главой электромагнетизма". На основе своей теории Максвелл предсказал существование давления, оказываемого электромагнитной волной (а значит, и светом), и вычислил его. Оно оказалось равным плотности энергии электромагнитного поля. Предсказание Максвелла позднее было блестяще доказано Петром Николаевичем Лебедевым в 1899 году.
В 1867 году умирает Фарадей. Глубоко переживает Максвелл смерть своего кумира. Он убеждён, что лучшим памятником Фарадею будет наибыстрейшее окончание " Трактата об электричестве и магнетизме". Восемь лет отдал Максвелл "Трактату". Это вершина его научного творчества, это настоящая энциклопедия электромагнетизма.
"Трактат" вышел в свет в 1873 году, когда Максвелл уже работал в Кембридже, куда он переехал в 1871 году, чтобы возглавить кафедру экспериментальной физики.
Максвелл, отстаивая выдвинутую Фарадеем идею близкодействия, доказал, что электрические и магнитные поля взаимосвязаны и могут существовать независимо от создавшего их источника, распространяясь в пространстве в виде электромагнитных волн. В этом и заключается сущность теории Максвелла, ядром которой являются уравнения Максвелла.
Четыре строчки уравнений, поразивших современников соей математической совершенностью и красотой, впервые появились в 1873 году в книге Максвелла "Трактат об электричестве и магнетизме", в которой объединены в единое целое оптика, электричество и магнетизм.
Фарадей был приверженцем идеи силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Силовые линии заполняют все окружающее пространство (поле, по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия.
Следуя Фарадею, Максвелл разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе Фарадеевы силовые линии (Faraday's Lines of Force, 1857). В 1860–1865 Максвелл создал теорию электромагнитного поля, которую сформулировал в виде системы уравнений (уравнения Максвелла), описывающих основные закономерности электромагнитных явлений: