Смекни!
smekni.com

Исследование работ Фарадея по электричеству (стр. 15 из 18)

1-е уравнение выражало электромагнитную индукцию Фарадея;

2-е – магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения;

3-е – закон сохранения количества электричества;

4-е – вихревой характер магнитного поля.

Эти уравнения имеют вид:


1)

2)

3)

4)

В современной интерпретации:

Уравнение 1 выражает закон Гаусса. Для статистических полей этот закон эквивалентен закону Кулона. Утверждается, что поток электрического поля через замкнутую поверхность пропорционален полному заряду, сосредоточенному в объёме, ограниченной данной поверхностью.

Уравнение 2 представляет собой закон Гаусса для магнитного поля. Он утверждает, что поток магнитного поля через замкнутую поверхность равен нулю. Это означает, что не существует магнитных аналогов электрического заряда.

Уравнение 3 выражает закон электромагнитной индукции Фарадея. Он утверждает, что интеграл от электрического поля вдоль замкнутого контура пропорционален скорости изменения потока магнитного поля через поверхность, натянутую на этот контур. Таким образом, изменяющееся магнитное поле сопровождается переменным электрическим полем.

Наконец, уравнение 4 представляет собой модифицированный закон Ампера. Максвелл изменил это уравнение, добавив в него второе слагаемое в правой части, названное током смещения, которое описывает изменение потока электрического поля. Модифицированный закон Ампера утверждает, что интеграл от магнитного поля по замкнутому контуру пропорционален сумме двух слагаемых. Первое из них содержит полный ток, протекающий сквозь поверхность, натянутую на этот замкнутый контур. Второе слагаемое (введенное Максвеллом) содержит скорость изменения потока электрического поля через эту поверхность. Благодаря внесённому Максвеллом дополнению к закону Ампера четвертое уравнение Максвелла есть утверждение, что переменное электрическое поле сопровождается переменным магнитным полем.

Продолжая развивать эти идеи, Максвелл пришел к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, т.е. должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3*1010 см/с, что близко к скорости света, измеренной семью годами ранее французским физиком А.Физо.

В октябре 1861 Максвелл сообщил Фарадею о своем открытии: свет - это электромагнитное возмущение, распространяющееся в непроводящей среде, т.е. разновидность электромагнитных волн. Этот завершающий этап исследований изложен в работе Максвелла "Динамическая теория электромагнитного поля" (Treatise on Electricity and Magnetism, 1864), а итог его работ по электродинамике подвел знаменитый "Трактат об электричестве и магнетизме" (1873).

Максвелл развивал свои уравнения и следствия из них на основе созданной Фарадеем модели электрических и магнитных полей. Мысленные модели описываемые его уравнениями, были сложнее, чем те, которые используют теперь. Максвелл и другие ученые того времени считали поля и волновые движения физическими свойствами реальной всепроникающей среды, которую они называли эфиром. И, тем не менее, в 1862 году Максвелл предложил, что "свет состоит из поперечных волнообразных движений той же самой среды, которая служит причиной электрических и магнитных явлений".

К тому времени на основе своих уравнений он рассчитал скорость электромагнитных волн и нашел, что эта скорость была приблизительно такой же, как и незадолго до этого скорость света.

Более точную наглядную иллюстрацию уравнений Максвелла предложил английский физик Брэгг в виде воображаемой модели, известной под названием "цепочка Брэгга". "Представьте себе цепочку, сделанную из чередующихся железных и медных колец . Замыкая на мгновение ключ К, мы посылаем ток от батареи в первое медное кольцо. Следующее, сделанное из железа кольцо намагничивается. Возникновение магнитного поля в нем вызывает индукционный ток в третьем кольце. Этот ток вызывает магнитное поле и т. д."

Генрих Герц писал о теории Максвелла: "Нельзя изучать эту удивительную теорию, не испытывая по времени такого чувства, будто математические формулы живут собственной жизнью, обладают собственным разумом — кажется, что эти формулы умнее нас, умнее даже самого автора, как будто они дают нам больше, чем в свое время в них заложено".

"Трактат по электричеству и магнетизму"', в котором Джеймс Кларк Максвелл подвёл итоги двухвековому развитию учения об электрических и магнитных явлениях, был издан в 1873 году. Современники называли его "библией электричества"'. Книга содержала более 1000 страниц, из которых лишь десяток относился непосредственно к знаменитым уравнениям. Сами уравнения были разбросаны по разным частям, и было их довольно много - 12.

По характеру изложения ''Трактат'' был слишком сложным. Знаменитый голландский физик Г. А. Лоренц, которому было суждено впоследствии развить и продолжить электромагнитную теорию, познакомившись в молодости с уравнениями Максвелла, не смог понять их физического смысла.

2.5 Современный взгляд на электродинамику Фарадея-Максвелла

Среди физиков электромагнитная теория Фарадея – Максвелла не сразу завоевала признание. Отдельные выдающиеся исследователи, подобно Гельмгольцу и Больцману, признавали ее значение и выступали в ее защиту, но даже такой проницательный мыслитель-физик, как Густав Кирхгоф, до конца своей жизни – он умер в 1887 году – твердо придерживался старых представлений об электрической жидкости и в своих лекциях затрагивал теорию Максвелла лишь мимоходом.

Анри Пуанкаре (1854-1912г.) одним из первых разобрался в многосложном изложении Максвелла. Его правильная и стройная интерпретация идей английского ученого помогла рассеять невразумительную путаницу у комментаторов этой теории. В своих лекциях Пуанкаре проводит глубокий анализ различных попыток теоретического обобщения экспериментально установленных законов электричества и магнетизма. Он подробно разбирает электродинамику Ампера и постепенно подводит слушателей к выводу о преимуществах уравнений Максвелла, наиболее полно охватывающих электромагнитные процессы и предсказывающие неизвестные ещё физике явления.

Выводы теории получают экспериментальное подтверждение в 1887 г., когда Генрих Герц (1857-1894) экспериментально получил электромагнитные волны. С 1887 г. Герц начинает ставить свои опыты. Прежде всего, он находит способ генерирования самых высокочастотных в то время колебаний, используя открытый колебательный контур (вибратор Герца). Обладая малой емкостью и индуктивностью, вибратор действительно позволял получать колебания высокой частоты, возникающие при проскакивании искр в разрядном промежутке диполя. Рядом с этим генератором находился незамкнутый виток. Герц обнаружил, что в момент разряда в генераторе происходит проскакивание искры между незамкнутыми концами витка, расположенного генератора. Это были первые в мире передатчик и приемник.

Рис.17. Первый радиатор Герца. Герц использовал два метровых провода, связанных с индукционной катушкой

Далее Герц заметил, что влияние генератора на приемник особенно сильно в случае резонанса (частота колебаний генератора совпадает с собственной частотой) Продолжая исследования, Герц при удалении резонатора от вибратора обнаружил, что в большом помещении с увеличением расстояния размер искр не убывает монотонно, а периодически меняется. Он объяснил это тем, что происходит интерференция прямой волны. Этот опыт наиболее убедительно доказывал, что электромагнитные волны, предсказанные Максвеллом, действительно существуют. Герц ставит опыты с целью проверки тождества световых и электромагнитных волн.

Почти сразу он обнаруживает ''тень''- непрозрачность металлических листов для ''электрических лучей'', но не наблюдает огибания. Значит, диэлектрики ''прозрачны'' для волн. Но они должны вызывать преломление. И Герц обнаруживает явление преломления волн в асфальтовой призме весом более чем в тонну, причем отклонение соответствует тому, которое должно быть по Максвеллу. Последующие опыты показали существование отражения волн, а затем и и поляризацию. Герц ставит между генераторм и приемником решетку из параллельных проволок, от ориентации которой меняется интенсивность искры в приемнике. Зная период колебаний вибратора и измерив длину волны, Герц вычислил скорость распространения электромагнитных волн; она оказывается равной скорости света.

Все это было изложено в работе "О лучах электрической силы", вышедшей в декабре 1888 года. Этот год считается годом открытия электромагнитных волн и экспериментального подтверждения теории Максвелла. В 1889 г., выступая на съезде немецких естествоиспытателей, Герц говорил: ''Все эти опыты очень просты в принципе, тем не менее, они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестящую победу теории Максвелла. Насколько маловероятным казалось ранее её воззрение на сущность света, настолько трудно теперь не разделить это воззрение''. Если Максвелл преобразовал представления Фарадея в математические образы, то Герц превратил эти образы в видимые и слышимые электромагнитные волны. Но даже после опытов Герца учение английского физика не получило широкого распространения.