Смекни!
smekni.com

Исследование работ Фарадея по электричеству (стр. 5 из 18)

В первом мемуаре 1785 г. Кулон исследовал отталкивающую силу и нашел, что при угловых расстояниях между шариками (которые первоначально при контакте получают одинаковые заряды) 36°, 18°, 9° нить закручивалась соответственно на 36°, 144°, 576°, т. е. силы росли обратно пропорционально квадратам расстояний. Во втором мемуаре Кулон нашел закон взаимодействия магнитных полюсов.

Существенным моментом в работе Кулона было установление метода измерения количества электричества и количества магнетизма (магнитных масс). В научной системе единиц законы Кулона дают основную базу системы электрических и магнитных единиц. После Кулона стало возможным построение математической теории электрических и магнитных явлений.

Закон Кулона, один из основных законов электростатики, определяющий силу взаимодействия между двумя покоящимися точечными электрическими зарядами, т. е. между двумя электрически заряженными телами, размеры которых малы по сравнению с расстоянием между ними. Установлен Кулоном в 1785 опытным путём с помощью изобретённых им крутильных весов. Согласно закону Кулона, два точечных заряда взаимодействуют друг с другом в вакууме с силой F, величина которой пропорциональна произведению зарядов e1 и e2 и обратно пропорциональна квадрату расстояния r между ними:

Здесь k — коэффициент пропорциональности, зависящий от выбранной системы единиц; в абсолютной (гауссовой) системе единиц (СГС системе единиц) k = 1.

Сила F направлена по прямой, соединяющей заряды, и соответствует притяжению для разноимённых зарядов (F << 0) и отталкиванию для одноимённых (F > 0).

Если взаимодействующие заряды находятся в однородном диэлектрике с диэлектрической проницаемостью ε, то сила взаимодействия уменьшается в ε раз:

Закон Кулона служит одним из экспериментальных оснований классической электродинамики; его обобщение приводит, в частности, к Гаусса теореме.

Законом Кулона называется также закон, определяющий силу взаимодействия двух магнитных полюсов:

Здесь f — коэффициент пропорциональности (в общем случае не совпадающий с k; в абсолютной системе единиц f = 1), m1, m 2 — магнитные заряды, μ — магнитная проницаемость среды, окружающей взаимодействующие полюса. В вакууме:

Открытие гальванизма независимо от какой-либо философии должно было рано или поздно привести к открытию электромагнетизма, и не случайно приоритет Эрстеда оспаривался. Еще в 1876 г. Эндрюс (1813—1885) в своей президентской речи на собрании Британской Ассоциации содействия прогрессу наук в Глазго должен был вернуться к вопросу о приоритете Эрстеда. Этот вопрос решен в пользу Эрстеда, и современный историк науки полностью согласен со словами Велланского: "Электромагнетизм открыт в Копенгагене профессором Эрстедом, который открытие свое возвестил 1820 года".

Ханс Кристиан Эрстед родился 14 августа 1777 г. в семье датского аптекаря. Учился Эрстед в Копенгагенском университете, где в 20 лет получил диплом фармацевта, а в 22 года степень доктора философии. В 1806 г. он становится профессором Копенгагенского университета. Увлекшись философией Шеллинга, он много думал о связи между теплотой, светом, электричеством и магнетизмом. Плодом этих размышлений явился изданный в 1813 г. в Париже трактат "Исследования о тождестве электрических и химических сил". В 1820 г. он сделал свое знаменитое открытие, описанное им в брошюре "Опыты, относящиеся к действию электрического конфликта на магнитную стрелку". Брошюра была издана на латинском языке в Копенгагене и датирована 21 июля 1820 г. Это открытие обессмертило имя ее автора в истории физики. Увлечение философией Шеллинга сказалось уже в самом названии брошюры Эрстеда. Он называет процесс, происходящий в проволоке, соединяющей полюсы гальванической батареи, не током, а "конфликтом". Результатом этого "конфликта" является разогревание проводника, причем Эрстед считал, что нагревание проволоки необходимо для получения эффекта. Опыты над действием тока на магнитную стрелку привели Эрстеда к важному выводу, что "электрический конфликт, по-видимому, не ограничен проводящей проволокой, но имеет довольно обширную сферу активности вокруг этой проволоки". Отбрасывая философскую терминологию, можно констатировать, что Эрстед обнаружил вокруг проволоки с током магнитное поле, действующее на ток.

Далее он пишет: "Кроме того, из сделанных наблюдений можно заключить, что этот конфликт образует вихрь вокруг проволоки". Другими словами, магнитные силовые линии окружают проводник с током, или электрический ток является вихрем магнитного поля. Таково содержание первого основного закона электродинамики, и в этом суть открытия Эрстеда.

Сегодня любой школьник без труда воспроизведет опыт Эрстеда, продемонстрирует "вихрь электрического конфликта", насыпав на картон, через центр которого проходит проволока с током, железные опилки.

Но обнаружить магнитные действия тока было нелегко. Их пытался обнаружить Петров, соединяя полюсы своей батареи железными и стальными пластинками. Он не обнаружил никакого намагничивания пластинок после нескольких часов пропускания через них тока. Имеются сведения и о других наблюдениях, однако с полной достоверностью известно, что магнитные действия тока наблюдал и описал Эрстед. Это открытие привлекло внимание физиков Европы. "Ученый датский физик, профессор, - писал Ампер,- своим великим открытием проложил физикам новый путь исследований. Эти исследования не остались бесплодными; они привлекли к открытию множества фактов, достойных внимания всех, кто интересуется прогрессом".

Открытие Эрстеда вызвало широкий резонанс. Вскоре, после того как де ла Рив в Женеве повторил опыты Эрстеда, хлынул поток опытов и сообщений. В сентябре 1820 г. Араго показал, что проволока с током притягивает железные опилки. В том же сентябре Швейгер применил эффект Эрстеда в качестве указателя тока (мультипликатор). В 1821 г. Поггендорф (1796-1877) придал ему удобную форму, и в этом виде его и поныне можно видеть в школьных физических кабинетах.

Закон действия тока на магнитный полюс был установлен экспериментально Био и Саваром. Доклад об этом законе Био и Савар сделали 30 октября 1820 г. Лаплас облек закон Био— Савара в математическую форму элементарного взаимодействия между элементом тока и намагниченной точкой. В этой форме закон Био - Савара фигурирует в учебниках физики.

Наибольший вклад в изучение электромагнетизма внес французский физик Ампер, назвавший новую область физики "электродинамикой", и это название прочно вошло в язык физики. Он изучал естественные науки, математику, греческий, латинский и итальянский языки. Ампер изучил все тома знаменитой "Энциклопедии" Дидро и Даламбера, труды Эйлера, Бернулли, Лагранжа.

Ампер избирает педагогическое поприще. Сначала он работает домашним учителем, а в 1802 г. становится преподавателем физики и химии в центральной школе г. Бурге. В 1803 г. Ампера назначают преподавателем математики в Лионский лицей. В следующем, 1804 г. он становится репетитором в Политехнической школе в Париже, а с 1808 г.— ее профессором.

В 1814 г. его избирают членом Академии наук. С 1820 г. Ампер усиленно занимается электродинамикой, и в 1826 г. выходит его основной труд по электродинамике "Теория электродинамических явлений, выведенная исключительно из опыта". Позже Ампер занимается многими научными проблемами, в том числе и проблемой классификации наук. В результате этих исследований появилось его сочинение "Опыт философии наук, или Аналитическое изложение естественной классификации всех человеческих знаний", первый том которого вышел в 1834 г., второй, незаконченный том вышел посмертно в 1843 г.

Вершиной научного творчества Ампера является создание электродинамики. Начиная с первого сообщения в Парижской Академии наук 18 сентября 1820 г., последовавшего через неделю после сообщения Араго об открытии Эрстеда, идут один за другим сообщения Ампера: 25 сентября; 2, 9, 16, 30 октября; 6, 13 ноября; 4, 11 и 26 декабря 1820 г. В 15-м томе "Анналов химии и физики" был опубликован "Труд, представленный Королевской Академии наук 2 октября 1820 г. и содержащий резюме докладов, прочитанных в академии 18 и 25 сентября 1820 г. относительно действий электрических токов". Этот труд подытоживал напряженную работу Ампера по исследованию нового явления, выполненную в течение короткого двухнедельного промежутка времени.

Ампер различает два основных электрических понятия: электрическое напряжение и электрический ток. Под электрическим током Ампер понимает "состояние электричества в цепи проводящих и электродвижущих тел"; под его направлением — направление положительного электричества. Внутри вольтова столба это будет "направление от конца, на котором при разложении воды выделяется водород, к концу, на котором выделяется кислород". "...Направление электрического тока в проводнике, соединяющем концы столба, будет обозначать направление от конца, где выделяется кислород, к концу, где выделяется водород". Следовательно, Ампер вводит впервые такие фундаментальные понятия, как "электрический ток", "электрическая цепь", устанавливает направление тока в замкнутой цепи. Наименование единицы тока ампер, принятое в физике, вполне оправдано заслугами Ампера. Он же вводит термин "гальванометр" для прибора, действие которого основано на отклонении магнитной стрелки, и указывает, что "им следует пользоваться при всех опытах с электрическими токами, как принято пользоваться электрометром при электрических машинах, чтобы видеть в каждый момент, существует ли ток и какова его энергия".