Содержание
Введение
Глава 1. Исследование электродинамики Фарадея
1.1 Исследование развития электродинамики до Фарадея
1.2 Труды М.Фарадея по постоянному току
1.3 Исследование положений М.Фарадея о существовании электрического и магнитного полей
1.4 Исследование положений Фарадея о превращении магнетизма в электричество и электричества в магнетизм
Глава 2. Исследование электродинамики Фарадея-Максвелла
2.1 Роль Фарадея в развитие электродинамики и электромагнетизма
2.2 Модельное представление об электромагнитных процессах
2.3 Достоинства и недостатки идей Фарадея
2.4 Использование идей Фарадея Максвеллом
2.5 Современный взгляд на электродинамику Фарадея-Максвелла
Заключение
Литература
Если действительно, для того, чтобы гений реализовал свой творческий потенциал, он должен родиться в нужное время и в нужном месте, то судьба Майкла Фарадея полностью это подтверждает. В год его рождения был опубликован трактат Гальвани, когда Фарадею исполнилось 8 лет, был создан Лондонский Королевский институт по распространению научных знаний. Годом позже в Лондонское Королевское общество - высший научный центр Великобритании - пришло сообщение об изобретении Вольта, когда Фарадею было 11 лет, его учитель Гемфри Деви доказал факт разложения воды с помощью вольтова столба и стал, таким образом, одним из основателей новой науки - электрохимии.
Будущий великий английский физик (Faraday, Michael) (1791–1867), родился 22 сентября 1791 в предместье Лондона в семье кузнеца. С 12 лет работал разносчиком газет, затем учеником в переплетной мастерской. Занимался самообразованием, читал книги по химии и электричеству. В 1813 один из заказчиков подарил Фарадею пригласительные билеты на лекции Г.Дэви в Королевском институте, сыгравшие решающую роль в судьбе Фарадея. Благодаря Дэви он получил место ассистента в Королевской ассоциации.
В начале Фарадей посвятил себя химии, но затем увлёкся опытами с магнитными и электрическими явлениями. Он приступил к этим опытам не сразу, хотя постоянно носил с собой маятник, чтобы не забывать о том, что пора давно заняться магнетизмом.
В 1813–1815, путешествуя вместе с Дэви по Европе, Фарадей посетил лаборатории ряда стран. Помогал Дэви в химических экспериментах, начал самостоятельные исследования по химии. Осуществил ожижение газов, получил бензол. В 1821 впервые наблюдал вращение магнита вокруг проводника с током и проводника с током вокруг магнита, создал первую модель электродвигателя. В течение последующих 10 лет занимался исследованием связи между электрическими и магнитными явлениями, в 1831 открыл электромагнитную индукцию, лежащую в основе работы всех электрогенераторов постоянного и переменного тока.
В 1824 Фарадей был избран членом Королевского общества, в 1825 стал директором лаборатории в Королевской ассоциации. С 1833 состоял Фуллеровским профессором химии Королевского института, оставил этот пост в 1862. Широкую известность получили публичные лекции Фарадея. Используя огромный экспериментальный материал, Фарадей доказал тождественность известных тогда "видов" электричества: "животного", "магнитного", термоэлектричества, гальванического электричества и т.д. Стремление выявить природу электрического тока привело его к экспериментам по прохождению тока через растворы кислот, солей и щелочей. Результатом исследований стало открытие в 1833 законов электролиза (законы Фарадея). В 1845 Фарадей обнаружил явление вращения плоскости поляризации света в магнитном поле (эффект Фарадея). В том же году открыл диамагнетизм, в 1847 – парамагнетизм. Ввел ряд понятий – подвижности (1827), катода, анода, ионов, электролиза, электродов (1834); изобрел вольтметр (1833). В 1830-х годах предложил понятие поля, в 1845 впервые употребил термин "магнитное поле", а в 1852 сформулировал концепцию поля.
Основные работы по электричеству и магнетизму Фарадей представлял Королевскому обществу в виде серий докладов под названием Экспериментальные исследования пЮ электричеству (Experimental Researches in Electricity). Кроме Исследований, Фарадей опубликовал работу Химические манипуляции (Chemical Manipulation, 1827). Широко известна его книга История свечи (ACourseofSixLecturesontheChemicalHistoryofaCandle, 1861).
Тема дипломной работы "Работы М.Фарадея по электричеству" актуальна, так как его открытия внесли огромный вклад в развитие не только фундаментальной, но и прикладной физики.
Талантливый экспериментатор, наделённый научной интуицией, Фарадей поставил ряд опытов, в которых были открыты фундаментальные физические законы и явления.
Фарадей высказал новые, оправдавшиеся в дальнейшем идеи о природе тока и магнетизма, о механизме проводимости в различных средах и др. Он доказал тождество различных видов электричества: полученного от трения, "животного", "магнитного" и др. Стремясь установить количественные соотношения между различными видами электричества, Фарадей начал исследования по электролизу, открыл его законы (1833–34) и ввёл сохранившуюся доныне терминологию в этой области. Законы электролиза явились веским доводом в пользу дискретности вещества и электричества. В 1840, ещё до открытия закона сохранения энергии, Фарадей высказал мысль о единстве "сил" природы (различных видов энергии) и их взаимном превращении. Он ввёл представления о силовых линиях, которые считал физически существующими.
Идеи Фарадея об электрическом и магнитном полях оказали большое влияние на развитие всей физики. В 1832 Фарадей высказал мысль о том, что распространение электромагнитных взаимодействий есть волновой процесс, происходящий с конечной скоростью.
В 1845 году, исследуя магнитные свойства различных материалов, Фарадей открыл явления парамагнетизма и диамагнетизма. В 1845 он установил вращение плоскости поляризации света в магнитном поле (Фарадея эффект), это было первое наблюдение связи между магнитными и оптическими явлениями, которая позднее явилась подтверждением электромагнитной теории света Дж. Максвелла. Фарадей изучал также электрические разряды в газах, пытаясь выяснить природу электричества.
Открытия Фарадея завоевали признание во всём научном мире. Впервые идеи Фарадея "перевёл" на общепринятый математический язык Максвелл. В предисловии к своему "Трактату по электричеству и магнетизму" (1873) он писал: "По мере того, как я подвигался вперед в изучении Фарадея, я убедился, что его способ понимания явлений также имеет математический характер, хотя он и не предстает нам облеченным в одежду общепринятых математических формул". Именем Фарадея впоследствии были названы законы, явления, единицы физических величин и т.д. (фарада, фарадей, Фарадея число, цилиндр Фарадея и др.).
Ф. Энгельс оценивал Фарадея как величайшего исследователя в области электричества. Значение Фарадея в развитии науки отмечал А. Г. Столетов: "Никогда со времен Галилея свет не видал стольких поразительных и разнообразных открытий, вышедших из одной головы"
Объект исследования: научная деятельность М.Фарадея в области электродинамики и магнетизма.
Цель исследования: применение научных открытий и законов М.Фарадея на уроках в средней школе
Задачи исследования:
1) проанализировать основные идеи и работы по электродинамике и магнетизму, способствующие открытиям М.Фарадея;
2) изучить работы М.Фарадея по постоянному току;
3) раскрыть идеи М.Фарадея о существовании электрического и магнитного полей;
4) рассмотреть эксперименты Фарадея по превращению электричества в магнетизм и магнетизма в электричество;
5) дать характеристику модельному представлению об электромагнитных процессах;
6) проанализировать основные идеи М.Фарадея, получившие продолжение в работах Д.Максвелла.
7) изучить развитие электродинамики Максвелла-Фарадея в современный период.
Начало электродинамики как науки чаще всего соотносится с фундаментальными исследованиями У. Гильберта (1544-1603), который в 1600 г. издал трактат "О магните, магнитных телах и о большом магните Земли", содержавшем описание более 600 опытов, осуществленных при его непосредственном участии. Объем работ был столь велик, а эксперименты были выполнены столь безукоризненно, что потребовалось еще почти сто лет после Гильберта, чтобы получить существенно новые результаты.
Прорыв в области развития физики в других областях в 1820 г. сменяется не менее впечатляющим каскадом открытий в области электричества и магнетизма:
· Х. Эрстед открывает магнитное действие тока;
· А. Ампер - взаимодействие электрических токов;
· Ж. Био и Ф. Савар - закон, определяющий напряженность магнитного поля;
· Т. Зеебек - термоэлектричество.
Как уже говорилось, научное исследование электрических и магнитных явлений началось с книги Гильберта, которому принадлежит и термин "электричество", произведенный от греческого названия янтаря. Гильберт кропотливо исследовал множество самых различных тел и построил для этой цели специальный электрический указатель, который он описывает таким образом: "Сделай себе из любого металла стрелку длиной в три или четыре дюйма, достаточно подвижную на своей игле, наподобие магнитного указателя". С помощью этого указателя, прототипа современных электроскопов, Гильберт установил, что способностью притягивать обладают многие тела, "не только созданные природой, но и искусственно приготовленные". Однако он нашел также, что многие тела "не притягивают и не возбуждаются никакими натираниями". К числу их относится ряд, драгоценных камней и металлы: "серебро, золото, медь, железо, также любой магнит". Тела, обнаруживающие способность притяжения, Гильберт назвал электрическими, тела, не обладающие такой способностью,- неэлектрическими. Электрические явления, по Гильберту, коренным образом отличаются от магнитных.